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Abstract 

In order to establish criteria for the selection of attitude- and station-keeping 
propulsion systems for future satellites and other unmanned spacecraft, current 
auxiliary propulsion systems were surveyed and parameterized. Thruster systems 
considered were inert gas, monopropellant hydrazine, vaporizing liquid, elec- 
trolysis, Tridyne, resistojet, radioisojet, and subliming solid. Electrostatic and 
electromagnetic thrusters were also surveyed, but were not included in the detailed 
study. A generalized auxiliary propulsion system selection technique, based on 
cost-effectiveness criteria, is presented. Three specific missions are included as 
examples of the use of the selection criteria: a synchronous satellite, a subsynchro- 
nous satellite, and a Grand Tour planetary spacecraft. 
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Satel lite Auxiliary- Propu lsion Selection Techniques 

1. Introduction 

With the advent of long life earth-orbiting and inter- 
planetary three-axis stabilized spacecraft, the technology 
of low-thrust to 5 lbf) propulsion systems has re- 
ceived increased emphasis. The selection of the optimum’ 
auxiliary-propulsion system for a given mission is ex- 
tremely important and can severely impact the spacecraft 
payload and the probability of success. An auxiliary- 
propulsion system can be characterized by parameters 
such as mass, power, performance, cost, volume, leakage, 
reliability, and others. The selection of an optimum system 
involves the tradeoff of these variables for the specific 
mission under consideration. 

In order to meaningfully relate or normalize such 
diverse parameters as cost, reliability, mass, power, etc., 
a cost-effectiveness technique can be used, which pro- 
duces a measure of excellence for each system option for a 
given mission. 

The utilization of cost effectiveness in technology deci- 
sions has received varied attention in the past. A cost- 
effectiveness comparison of auxiliary-propulsion systems 

‘“Optimum” in this report means the most applicable subsystem 
for a given mission, based on maximized cost effectiveness, rather 
than the optimized subsystem without regard for existing tech- 
nology and cost. 

was undertaken by General Electric on the Orbiting As- 
tronomical Observatory (OAO) and Nimbus programs 
(Ref. 1). A report on the design criteria for spacecraft 
propulsion system selection (Ref. 2) has been used as a 
basis for the cost-effectiveness techniques presented 
herein. Section I1 presents a more in-depth discussion of 
what the terminology cost-effectiveness means to a sub- 
system designer, what some of the misconceptions of 
the term are, what benefit can be gained from a cost- 
effectiveness analysis, and finally how to go about a cost- 
effectiveness analysis of candidate auxiliary propulsion 
systems. This report is a continuation of earlier thruster 
tradeoff studies at the Jet Propulsion Laboratory. 

Before a meaningful tradeoff of thruster systems can 
begin, an up-to-date survcy of existing technology is nec- 
essary. An extensive survey of available thruster systems 
is presented in Appendix A. System types included in the 
survey are as follows: 

(1) Inert gas: H,, He, Ne, N,, A, K, Xe, CF,, and CH,. 
The inert gas system is characterized by a high- 
pressure gas, which is reduced in pressure by a reg- 
ulator and expelled through a nozzle. 

(2) Tridyne (gaseous 02, H,, and N,). The tridyne sys- 
tem is identical to the inert gas system except that 
the gas is catalytically reacted to increase the gas 
temperature prior to expulsion through a nozzle. 
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(3) Hydrazine direct catalyst. The hydrazine direct 
catalyst system is composed of a liquid expulsion 
feed system and a catalytic thrust chamber that 
decomposes the hydrazine prior to expulsion. 

(4) Hydrazine resistojet. The hydrazine resistojet sys- 
tem is similar to the hydrazine direct catalyst sys- 
tem; however, the hydrazine is decomposed by an 
electrically heated resistance element in the thrust 
chamber. 

( 5 )  Hydrazine plenum. The hydrazine plenum system 
has a liquid hydrazine feed system that is fed into 
a catalytic gas generator; the gases generated are 
stored in a plenum for later gas expulsion. 

(6) Vaporizing liquid: ammonia, Freon 12, butane, and 
propane. The vaporizing liquid system is charac- 
terized by a liquid propellant pressurized by its own 
equilibrium vapor pressure and the expulsion of 
this vapor through a nozzle. 

(7) Resistojets: ammonia, nitrogen, hydrogen, and am- 
monia carbamate. The resistojet is not really a sys- 
tem, but a subsystem. Cold fluid (gaseous or liquid) 
is increased in temperature by passing through an 
electrically heated heat exchanger. 

(8) Radioisojet : ammonia and hydrogen. The radioiso- 
jet is similar to a resistojet; however, a radioisotope 
heat source is employed rather than an electrical 
resistance heater. 

(9) Electrolysis: water (hot or cold gas thrusting mode) 
and hydrazine. Electrolysis auxiliary propulsion sys- 
tems produce a low-molecular weight, gaseous pro- 
pellant by the electrolysis of a suitable liquid. The 
gaseous propellant is then expelled as an inert gas 
or ignited as in the case of water electrolysis. 

(10) Subliming solid: ammonium hydrosulfide, ammo- 
nium carbamate, and monomethyl ammonium car- 
bamate. The subliming solid system is characterized 
by a solid propellant, which when heated is pres- 
surized by its own vapor pressure and this vapor is 
expelled through a nozzle. 

Additional systems (ion, colloid, pulsed plasma, “cap 
pistol,” and “honeycomb”) have been included in the pre- 
liminary survey. 

In Table 1 some favorable and unfavorable character- 
istics of auxiliary propulsion systems are presented. This 
tablc is not meant to servc as a selection criterion for can- 
didatc systems; however, it may serve to narrow the selec- 
tion to a few candidate thrusters. 

The performance and mass of the ten system types listed 
above are included in Appendix B. Thruster system per- 
formance is tabulated for various propellants, duty cycles, 
and power. Feed system mass is parameterized as a func- 
tion of propellant mass. Tabulations of component masses 
are available for redundancy calculations. Subsystem reli- 
ability calculations are presented in Appendix c; a survey 
of mechanical component failure rates and reliability 
theory is included. System redundancy equations are de- 
veloped along with detailed system reliability calculations. 
Estimated system costs are presented in Appendix D; 
both hardware and development costs are listed. 

Seven system configurations are referenced throughout 
the report. These configurations are presented in Fig. 1. 
The first three configurations (a, b, and c) are single sys- 
tems with six thrusters (&yaw, t ro l l ,  and tpitch).  These 
configurations provide three-axis attitude control. Thrust- 
ers will operate about a moment and can cause small trans- 
lations of the spacecraft. The fourth configuration (d) has 
twelve thrust chambers (TIC) which provide couples in 
all three axes. In a degraded mode one of the two thrusters 
in any of the couples could fail closed and the other would 
provide moments about that axis. The last three configu- 
rations (e, f, g) are double systems, two complete systems, 
each able to provide three-axis attitude control in case 
of a failure in the other system. 

Auxiliary propulsion systems/spacecraft interactions 
must be studied before a specific system can be selected. 
One of the most subtle propulsion system,’spacecraft inter- 
actions is plume impingement on spacecraft surfaces, 
other subsystems, and scientific instruments. This subject 
will be addressed in an addendum to this report. 

The advent of momentum wheels has greatly changed 
the major role of an attitude propulsion system in that 
limit cycle operation is not a primary design criterion. 
Impulses for unloading momentum wheels are separated 
by large time intervals (on the order of hours to weeks) 
with respect to limit cycle operation, thus reducing the 
number of thruster cycles. In addition, total impulse re- 
quirements are reduced because of the removal of cyclical 
disturbances by the momentum wheels. The pointing ac- 
curacy with momentum wheels is limited by parameters 
such as sensor accuracy and wheel inertia, assuming 
thruster transients are small. This implies that thruster 
selection will not affect pointing accuracy, provided a rea- 
sonable thrust level can be obtained. In a detailed dy- 
namic six-degree-of-freedom simulation of an ATS-type 
satcllite, various system thrust profiles were investigated 
and compared with square wave pulse shapes, If autopilot 
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Table 1. General characteristics of thruster systems 

Thruster system 

Inert gas 

Tridyne (gaseous monopropellant) 

Vaporizing liquid 

Hydrazine catalyst 

Hydrazine resistajet (liquid) 

Hydrazine resistajet (gaseous) 

Hydrazine plenum 

Water electrolysis 

Hydrazine electrolysis 

Subliming solid 

"Cap pistol" and "honeycomb" 

Fovorable characteristics 

Inexpensive. 

Repeatable impulse bit. 

Flight experience. 

Same feed system as inert gas. 

Increased performance over inert gas. 

Repeatable impulse bit. 

Relatively inexpensive. 

law-pressure storage. 

Repeatable impulse bit. 

Flight experience. 

Relatively high reliability of feed system. 

Medium specific impulse. 

Flight experience. 

l a w  leakage of propellant far long-term 

storage. 

Relatively high reliability of feed system. 

Medium specific impulse. 

l aw  leakage of propellant for long-ternr 

storage. 

Relatively high reliability of feed system. 

Medium specific impulse. 

l ow  leakage of  propellant. 

Repeatable impulse bit. 

Relatively inexpensive. 

Repeatable impulse bit. 

Flight qualified system. 

Medium-to-high specific impulse. 

Cell has undergone flight qualification. 

Repeatable impulse bit. 

Repeatable impulse bit. 

Could also self-pressurize i n  "dual-mode." 

High reliability. 

l o w  thrust. 

No leakage. 

Medium specific impulse. 

Unfavorable chorocteristics 

l a w  specific impulse. 

long-term leakage, for long missions. 

High-pressure tankage required. 

Excessive mass far high total impulse missions. 

Medium-to-law specific impulse. 

long-term leakage, for long missions. 

High pressure tankage required. 

law-power heater required. 

Relatively law reliability of present feed system 

designs 

Medium-to-low specific impulse. 

leakage far long missions. 

Moderately expensive. 

Poor repeotability at very low impulse bit with 

cold catalyst bed. 

"limited" catalyst bed life. 

Relatively expensive development. 

Poor pulse response at law thrust. 

Relatively expensive development. 

Thermal control of vaporizer required 

Relatively low reliability of nonpassive feed 

system. 

Medium-to-law specific impulse. 

law reliability. 

Relatively high development cast. 

l ow  reliability. 

Relatively high development cost. 

Thermal cantrol problems. 

Long on-off times. 

Moderately low specific impulse. 

Complex mechanisms and logic circuitry. 

large f ixed mass. 
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Table 1 (contd) 

Thruster system 

Ion 

Colloid 

Pulsed plasma 

Resistojet, NH> 

Resistojet, Nt 

Radioisoiet, NH3 

Favorable characteristics 

High specific impulse. 

Flight experience. 

High specific impulse. 

Law power-to-thrust ratio. 

Low propellant vapor pressure. 

High specific impulse. 

Simple system. 

Flight experience. 

Relatively inexpensive. 

law pressure storage. 

Repeatable impulse bit. 

Flight experience. 

Medium specific impulse. 

Relatively inexpensive. 

Repeatable impulse bit. 

Medium-to-high specific impulse. 

Repeatable impulse bit. 

stability problems are not created by the initial delay and 
rise time, the effect of the thrust transient characteristics 
will result in a somewhat larger transient position error, 
rate error, and propellant consumption. However, for most 
realistic thruster systems these additional errors arising 
from transient rather than square pulse shape are very 
small and are considered acceptable in a conservative 
system design. The subliming solid system is the only 
system considered in this report that could lead to large 
errors in propellant estimation if a square wave approxi- 
mation is used. If the subliming solid system is restricted 
to a long-pulse, or steady-state thrusting, then a square 
wave approximation to the thrust profile can be assumed. 

Other major roles of a secondary propulsion system are 
tipoff rate reduction, reference acquisition, orbit trim, 
and station keeping. North-South station keeping require- 

Unfavorable characteristics 

High voltages and large power requirement. 

Complex system. 

Exhaust neutralizer required. 

Expensive. 

Some power required. 

High voltages. 

Complex system. 

Exhaust neutralizer required. 

Expensive. 

large power requirement. 

l imited thruster life. 

RF noise. 

Potential feed system problems. 

Relatively law reliability of present feed 
system designs. 

Thruster heater power required. 

Leakage far long missions. 

Medium-to-low specific impulse. 

Long-term leakage. 

Leakage for long missions. 

High cost. 

Isotope hondling problems. 

Influence of isotopes on spacecraft and 
thruster design. 

Leakage for long missions. 

Relatively low reliability of present feed 
system designs. 

ments (typically 150 ft/s/yr or so) can impose a relatively 
large total impulse requirement on an auxiliary-propulsion 
system. 

Three mission profiles are presented as examples in this 
report: a synchronous satellite, a subsynchronous satellite, 
and a planetary space vehicle. These three missions, cou- 
pled with the ten basic systems and combinations of these 
systems, present a wide variety of tradeoffs of system 
designs. 

The tradeoff examples of Sections 111, IV, and V show 
that the preferred auxiliary-propulsion system for the syn- 
chronous satellite considered (ZnteEat ZV) is a 10-mlbf 
ammonia resistojet. The optimum auxiliary-propulsion 
system for the subsynchronous satellite considered, Earth 
Resources Technology Satellite (ERTS), is a combination 
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(a) SINGLE SYSTEM 
SINGLE SOLENOID 

n 

(b) SINGLE SYSTEM 
DUAL-SERIES SOLENOID 

SINGLE SYSTEM 
QUAD SOLENOID 

(e )  DOUBLE SYSTEM 
SINGLE SOLENOID 

(d) SINGLE SYSTEM 
12 THRUST CHAMBERS (l/C) 
D UA L-S ER I ES S OLE N 0 I D 

0 

' f )  DOUBLE SYSTEM 
DUAL-SERIES SOLENOID 

Fig. 1. System configurations 

Y 

19) DOUBLE SYSTEM 
QUAD SOLENOID 
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of hydrazine plenum low-level thruster and hydrazine 
catalyst high-level thruster. The hydrazine catalyst system 
is the optimum for the planetary spacecraft under consid- 
eration, Thermoelectric Outer Planet Spacecraft (TOPS). 

The techniques presented in Section I1 are valid for 
comparing auxiliary propulsion systems. The parametric 
data presented in the appendixes is based on a new mis- 
sion with little or no previous development effort. In the 
case of missions that are merely continuations of previous 
programs the cost and other data associated with previ- 
ously used subsystems will differ from the generalized 
data in the appendixes. It is emphasized that the results 
in this report are completely dependent on the mission 
and subsystem assumptions, and that they not only change 
from mission to mission but also may change with time 
for the same mission as technology evolves and as the 
relations of the values of cost, mass, reliability, etc., vary. 

I I. Cost-Eff ectiveness Techniques 

Before a discussion of cost-effectiveness techniques can 
begin, the terminology of this Section must be introduced. 
Several terms that require accurate definitions will appear 
in the discussion. The term “worth may be defined as a 
composite measure of multiple program objectives and the 
degree to which those objectives are met within the as- 
sumed structure of the particular program being analyzed 
(Ref. 3). Worth may be a decaying function with time as 
in the case of a satellite which is constantly returning 
data. “Probability of success” is defined as the probability 
that all the required subsystems are functioning properly 
(or in redundant backup modes) at a given time. The fail- 
ure of a required subsystem (eg., communication, power, 
attitude control) will result in the loss of satellite use- 
fulness. “Utility” means usefulness; the satisfying of a 
need (Ref. 4). As applied in this resort, utility is the prod- 
uct of two factors, worth and probability of success. 
“Effectiveness” is considered equivalent to utility. “Cost” 
requires little definition; it may be categorized as con- 
sumption of physical resources, employment of human 
resources, and dissipation of time (Ref. 5). Costs may be 
indexed by a dollar-value scale. The value of an outcome 
or the measure of utility is the result of a subjective eval- 
uation by the decision-maker. An obvious scale for value 
is dollars, but many times this is an inappropriate unit of 
measure; for example, military decision makers assess the 
value of lives lost, or targets damaged. 

The application of cost-effectiveness methods as a cri- 
terion for subsystem design tradeoffs and design selections 
has received consideralble attention recently. Develop- 

ment of the cost-effectiveness discipline, and its wide- 
spread use by planners, has been extremely rapid-so 
much so that cost-effectiveness analysis is still relatively 
ill-defined within the technical community. 

Cost effectiveness is often criticized, as in this statement 
by Rep. L. Mendel Rivers, Chairman of House Armed 
Services Committee (Ref. 6): 

“All of this is being rationalized on the basis of cost/ 
effectiveness studies. Do you know that the M14 rifle 
costs more than a bow and arrow? From a cost/effec- 
tiveness standpoint we obviously would be better off 
if we went back to bows and arrows. A beer bottle filled 
with gasoline and stuffed with a rag wick is a fairly 
effective weapon at close quarters, and it is cheaper to 
produce than a land mine or a hand grenade. From a 
cost/effectiveness viewpoint, we should be collecting 
beer bottles and old rags.” 

Why such violent opposition to cost-effectiveness? It is 
something a man always practices when he buys a house 
or plans a vacation. It is seldom the mathematics or com- 
putation that is questioned or at fault; almost always it is 
how we decide what assumptions to make, what contin- 
gencies to consider, what objectives to choose, what the 
costs are and what the gains are; and, above all, it is the 
things \ye did not consider at all (Ref. 7). 

The essence of decision making is a tradeoff of cost and 
utility. Cost is usually easy to predict, within a given error 
band, whereas utility is quite difficult to predict. Disagree- 
ment on assigned utilities is common, and care must be 
taken to select realistic utilities. The broad application of 
the cost-effectiveness discipline to aerospace systems like 
missiles, communication satellites, launch vehicles, pro- 
gram planning, and earth station profit analysis was the 
subject of an AIAA Lecture Scries in 1966. A further re- 
finement of cost-effectiveness techniques as applied to 
spacecraft propulsion systems is presented in Ref, 2; the 
techniques and principles of this work have been utilized 
herein. 

What benefit can be gained from a cost-effectiveness 
analysis of auxiliary propulsion systems? Ultimately, when 
faced with a list of candidate systems and their associated 
mass, cost, reliability, and power, a selection of a single 
system for a given mission must be performed. These 
characteristics (weight, reliability, etc.) have different rel- 
ative effects on the system capability depending on the 
particular mission in question. With cost-effectiveness 
techniques these diverse characteristics can be normalized 
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into one figure-of-merit, thereby establishing the quanti- 
tative relative importance of each characteristic. In the 
past, selections have too often been made on unclear and 
undefined criteria and have therefore been subject to con- 
flicting personal opinions. Use of the proposed cost- 
effectiveness selection criteria, if nothing else, forces the 
decision maker to document his input data and assump- 
tions; traceability is vastly increased. The method pre- 
sented herein is not difficult to use and sophisticated 
mathematics is not required. The following theory may 
at first appear abstract, but the example which follows 
should clarify the use of the techniques. 

A. Theory 

Is the objective of a cost-effectiveness study to find a 
program or system that offers the maximum ratio of utility 
to cost? In general, when considering the unbounded 
problem of comparing broad programs and systems, deci- 
sions based on maximizing the ratio of effectiveness over 
cost can be misleading. Maximum gain is infinitely large, 
and minimum cost is zero. Seek the policy which has 
that outcome, and you shall not find it. Comparisons 
of alternative large systems or programs should be ap- 
proached either with total cost fixed by attempting to 
maximize utility, or with utility fixed and attempting to 
minimize cost. The spacecraft subsystem designer, how- 
ever, is faced with a different problem. He must select 
from competitive systems, which offer several values of 
total spacecraft utility at several values of cost. The sub- 
system utilities and costs are therefore bounded, but not 
fixed. Is the ratio of utility to cost a valid selection cri- 
terion for spacecraft subsystems? For this purpose the 
ratio appears to be valid. Each subsystem within the space- 
craft is usually assigned a baseline budget, which will 
probably not be equal to any of the projected costs of 
the candidate subsystems. Competition between subsys- 
tem designers for incremental increases to their allotted 
budgets should be based on attendant gains in total space- 
craft utility per added dollar. This criterion will force 
some su'bsystems below their initial budgets and hence 
to less expensive designs. The initially stated problem 
thus degenerates to a feedback cycle where changes in 
the proposed spacecraft program goals and objectives are 
incorporated to suit the restricted funds (Ref. 2). 

Cost effectiveness may be described in several ways. 
It is expressed here as: 

where Ui are incremental utility values and Ci are con- 
current cost increments. Utility is expressed as the prod- 
uct of worth and probability of success. The increments 
are expressed as time points. For purposes of this report, 
an averaging and summation of functions over time incre- 
ments will replace a formal integration. 

Worth is a function of spacecraft payload mass. Proba- 
bility of success is a function of individual subsystem 
reliability and, in this study, is directly a function of aux- 
iliary propulsion reliability. Since spacecraft probability 
of success is a function of subsystem redundancy, it is 
therefore a function of redundancy mass. Mission cost 
is directly a function of subsystem cost. Equation (1) is 
therefore a function of mass, cost, and reliability: 

CE = f (mass, cost, reliability) (2) 

The initial step in a tradeoff study is the characterization 
of competitive systems in terms of their design parameters. 
The comparison of systems becomes a comparison of 
groups of parameters. System descriptions can usually be 
mapped into three parameters: mass, reliability, and cost. 
The relative influence of these parameters can be ex- 
pressed in terms of system cost effectiveness. 

Partial differentiation of Eq. (2) results in the following 
expression: 

d cost 
Z E  

dmass + - dCE = - aCE 
amass acost 

d reliability 
Z E  

+ areliability (3) 

For purposes of this report this expression should be 
simplified to match the accuracy of supplied mission data: 

ACE I Amass + - Acost ACE = - Amass 4cost I 
ACE 1 Areliability -t areliability (4) 

A baseline value of cost effectiveness may be assigned as: 
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Any modifications to this reference value can be mea- 
sured in terms of the individual changes in mass, relia- 
bility, and cost: 

CE = CEbaseline +ACE 

ACE 1 Amass + - Acost Amass Acost 
- - CEbaseline + - 

ACE I Areliability 
-t Areliability (5) 

Where Amass, Acost, and Areliability are the differences 
in the baseline and comparative system mass, cost, and 
reliability (deltas). The terms ACE/Amass; ACE/Acost; 
and ACE/Areliability are called “influence coefficients” 
and must be determined for each mission. The influence 
of one parameter on mission utility and cost must be eval- 
uated while the other parameters are fixed. A more general 
form of Eq. (5)  could contain many more terms, each 
consisting of a differential parameter and its correspond- 
ing influence coefficient (e.g.’, power, volume). The map- 
ping of these additional parameters into mass, cost, and 
reliability should be implemented when available data 
make this effort practical. Without quantification, the 
influence of these considerations must be qualitatively 
superimposed on the quantitative analytical results. 

Influence coefficients in general are determined by not- 
ing the effect of subsystems other than the auxiliary pro- 
pulsion system on the mission cost effectiveness. The 
influence of these changes can then be used to compare 
the small changes in auxiliary propulsion characteristics 
that exist between candidate thrusting systems. 

Since most space vehicles are constrained by mass, rela- 
tive worth must be assigned to subsystem mass (i.e., there 
exists a mass influence coefficient). Mission utility may be 
affected by two types of mass allocation: 

(1) The allocation of additional mass to scientific pay- 
load (direct effect on mission value or worth). 

(2) The allocation of additional mass to subsystem 
redundancy (direct effect on mission probability of 
success). 

If spacecraft mass is constrained, then the reduction in 
mass, achieved by changing from a heavy alternative sub- 
system to a lighter subsystem, may be assigned to either 
additional scientific payload or subsystem redundancy. 

8 

Cost influence coefficients are relatively easy to obtain; 
however, care must be taken when cost data are compiled. 
The following two types of costs must be identified: 

(1) Nonrecurring developmental costs. 

( 2 )  Recurring hardware costs. 

Nonrecurring costs must be spread over the total number 
of missions. 

Since the auxiliary propulsion subsystem is continually 
in use, a change in subsystem reliability will impact the 
entire mission success. If the probability of mission suc- 
cess is given by a function (Pi), then incorporated into this 
function is the baseline thruster reliability. If a new sub- 
system is compared, then the corresponding probability 
of mission success is given by: 

where P M s  is the new probability of mission success; RNs 
and RnL are the reliabilities of the new comparative sub- 
system and the baseline subsystem, respectively. 

Competitive subsystems (e.g., inert gas vs hydrazine 
catalyst) can now be compared with a common figure of 
merit. A system is selected as the baseline for comparisons. 
This selection of a baseline system can be arbitrary for 
the first iteration. The baseline value of cost effectiveness 
is calculated with Eq. (1) and is assigned to the selected 
baseline system. Equation (5)  is then used with the proper 
influence coefficients inserted. The differences in values 
of mass, cost, and reliability between the baseline system 
and the comparative system (deltas) are inserted into 
Eq. (5)  and a combined figure of merit is obtained. The 
calculated optimum system is the one with the maximum 
value of cost-effectiveness and can be graphically dis- 
played when the various options are plotted. To illustrate 
this method, a hypothetical example will now be explored.* 

B. Example 

Auxiliary propulsion system mission requirements are 
necessary to begin a comparison of competitive systems. 
From these requirements, the desired thrust level, duty 
cycle, and total impulse are calculated. Competitive sub- 
systems may then be fully defined utilizing the perform- 
ance and design information in Appendixes B, C, and D. 
Assume that a comparison of an inert gas and a hydrazine 

2Exaniples showing actual design cases are presented in Sections 
111, IV, and V. 
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Table 2. System data 

System Configuration I effectiveness I Mass, Ibm I Reliability I Cost: $ million 

Inert gas 

Inert gas 

Inert gas 

Hydrazine catalyst 

Hydrozine catalyst 

Hydrazine catalyst 

Single system, 6 thrust chambers 

Single system, 12 thrust chambers 

Double system, 6 thrust chambers 

Single system, 6 thrust chambers 

Single system, 12 thrust chambers 

Double system, 6 thrust chambers 

150 

160 

250 

140 

150 

190 

0.900 

0.910 

0.980 

0.850 

0.880 

0.900 

0.1 20 

0.140 

0.200 

0.250 

0.300 

0.400 

0.0775 

0.0764 

0.06483 

0.0762 

0.07564 

0.06949 

‘For the detailed treatment of cost see Appendix C. 

direct catalyst system is conducted, resulting in the matrix 
of design characteristics given in Table 2. The auxiliary 
propulsion designer, now faced with this matrix of char- 
acteristics, must decide which system should be selected 
for the application being considered; relative importance 
of cost, mass, and reliability must be assessed for the spe- 
cific mission/program in order to make a meaningful 
design decision. The cost-effectiveness criteria described 
earlier provides us with a technique to relate the propul- 
sion characteristics into one figure of merit. 

Note that the designer is faced with all of the same 
data (e.g., mass, reliability, and cost), he would otherwise 
use to form a basis for a design selection; however, now 
a quantitative technique is available to aid in judging the 
importance of the different characteristics of the candidate 
systems. 

Mission data and reference total program cost are as 
follows: Assume that the program is a $lOO,OOO,OOO 
weather satellite; mission worth and probability of suc- 
cess are presented in Figs. 2 and 3; relative worth of in- 

4 I 
1 2 3 4 

TIME, yi 

Fig. 2. Worth of data returned from satellite 

creased scientific payload mass (150 lbm is the baseline 
mass allocated to the scientific payload) is expressed in 
Fig. 4. Figure 5 is based on a system redundancy study. 

With these data, computation can begin. The calcu- 
lations will follow these steps: 

(1) Calculate baseline cost effectiveness. 

(2) Calculate mass influence coefficients. 
(a) Influence coefficient determined by addition or 

subtraction of spacecraft redundancy mass. 
(b) Influence coefficient determined by addition or 

subtraction of spacecraft payload mass. 

(3) Calculate reliability influence coefficient. 

(4) Calculate cost influence coefficient. 

(5 )  Determine the incremental (delta) values of mass, 
cost, and reliability between the individual subsys- 
tems and the baseline subsystem. 

I T I M ,  yr 

Fig. 3. Mission probability of success 
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0 50 100 150 200 250 

MASS, Ibm 

Fig. 4. Relative worth of scientific payload vs mass 

(6) Select the proper mass in,fluence coefficient for 
spacecraft mass addition and for spacecraft mass 
subtraction. 

(7) Insert influence coefficients into Eq. (5) and com- 

(8) Plot the results. 

(9) Perform sensitivity analysis (optional). 

pare subsystems. 

An influence coefficient calculation summary is pre- 
sented in Table 2. From Eq. (1) the baseline cost effective- 
ness can be computed: 

where 

- 10.0 (0.60) + 7.5 (0.20) + 5.0 (0.05) units 
- 

100 $ million 

units 
$ million = 0.0775 

Wi = baseline worth from Fig. 2, 

Pi = baseline mission probability of success with 
zero lbm of redundance from Fig. 3, 

and 

z Ci = total mission cost of $100 million 
i 

0 1 2 

TIME, y i  

Fig. 5. Effect of redundancy on mission probability 
of success 

If the inert gas 6-thrust-chamber system is assumed as 
the baseline thruster system, then baseline attitude pro- 
pulsion mass, reliability, and cost are 150 lbm, 0.900, and 
$120,000, respectively. The baseline thruster reliability 
is included in the baseline mission probability of success. 
The $120,000 is included in the baseline of $100,000,000 
system cost. 

The effect of 100 lbm of additional spacecraft redun- 
dancy is presented in Fig. 5. With the aid of Eq. (1) 
utilizing the modified probability of success we get: 

where 

- 10.0 (0.70) + 7.5 (0.30) + 5.0 (0.20) units 
- 

100 $ million 

units 
= 0.0925 million 

Wi = baseline worth from Fig. 2, 

Pi = mission probability of success with 100 lbm of 
redundancy from Fig. 5, 

and 

Ci = total mission cost of $100 million 
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When the baseline and modified cost effectiveness are introduced into Eq. (5), the following influence coefficient for 
redundancy mass allocation can be determined: 

ACE 1 Amass 4- - Amass ACE I Areliability Acost ACE 1 Areliability CE = CEbasel ine  + - 

units 

lbm = 1.5 X lo-" Amass 100 lbm (5) 

A similar calculation for reduction of redundancy mass is included in the calculation summary table. The effect of 
additional mass allocated to spacecraft payload on mission cost effectiveness can also be determined. The mission worth 
curve (Fig. 2) is modified for each addition or subtraction of spacecraft payload mass. The reference relative worth is 10 
units at 150 lbrn of payload. To compute the effect that changes in payload mass have on mission worth, the ratio of the 
new relative worth to the baseline quantity is used as a multiplier of the mission worth curve. As an example, the new 
mission worth that results if 50 lbm is added to the payload would be computed by the following equation: 

RWSP (baseline mass + 50 lbm) 
RWSP (baseline mass) Wi W i  (baseline mass + 50 lbm) = 

where 

Wi = baseline worth from Fig. 2, 

RWSP ( X )  = relative worth from Fig. 4 of a payload mass at X lbm, 

and baseline mass refers to the baseline scientific payload mass, which is 150 lbm in Fig. 4. 

The cost effectiveness of a spacecraft with 50 lbm added to payload would be: 

P;Wi (baseline mass + 50 lbm) 

i 

units (E) (10.0) (0.60) + (E) (7.5) (0.20) + (-$) (5.0) (0.05) $ million 
- - 

100 

(lO.O)~(O.SO) + (7.5) (0.20) + (5.0) (0.07) units 
10 100 ] $million 

Use of Eq. (5) again gives 

units units 

( million) 
lbm 

(0.0930 - 0.0775) $ million 
= 5.1 X Amass 50 lbm 
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Reduction in payload mass is treated similarly. Calculations are included in Table 3. 

The effect of an increase or decrease in subsystem reliability is easy to compute. In this example, the baseline relia- 
bility is 0.900. With the aid of Eq. (6), the effect of a 0.01 increase in subsystem reliability would be 

P i  = 1.01 Pi  
0.910 
0.900 

- - 

From Eq. (1): 

w1ic.n cvaluating effect of increased subsystem reliability, Pi is replaced by PMsi 

i 

0.910 0.910 0.910 
(0.900) (10.0) (0.60) ~ + (7.5) (0.20) ~ (0.900) + (5.0) (0.05) (o.900) units 

100 $ million CE = 

0.910 0.910 + (7.5) (0.20) ~ (0.900) + (5.0) (0.05) ~ 

0.910 
(10.0) (0.60) ~ -- (0.900) (0.900) units c E  z 

100 $ million 

units 
$ million CE = 0.0784 

Table 3. Influence coefficient calculations 

where 

P ,  = probability of success (Fig. 3) 

W, = mission worth (Fig. 2 )  

X C, = total mission cost of $100 million 

10 (0.60) f 7.5 (0.2) + 5.0 (0.05) - o,0775 units 
$100 $ million 

- CEbasellne = 

Addition and subtraction of moss to system redundancy: 

+ 100 Ibm: 

10 (0.70) f 7.5 (0.3) f 5.0 (0.20) - o.0925 units 
$ million 

CE = 
$100 
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Table 3 (contd) 

0 to + 100 added: 

ACE - 0.0925 - 0.0775 - 0.015 = 1.5 lo4 (-) -- - 
Amass 100 100 Ibm 

- 100 Ibm: 

10 (0.50) -I- 7.5 (0.1) f 5.0(0.01) = o.0580 units 
CE = 100 $ million 

0 to -100 Ibm: 

ACE - 0.0580 - 0.0775 - 0.0195 = 1.95 -- - 
Amass -100 100 Ibm 

Addition and subtroction of mass to scientific payload: 

0 to +50 Ibm: 

Relative worth 12 instead of 10 

12 units 
10 $ million 

CE = - CEbasel ine = 0.0930 ~ 

0 to 4-50 Ibm: 

ACE - 0.0930 - 0.0775 
- = 5.1 X 10' Ibm Amass 50 

Oto  -50Ibm: 

2 units 
10 $ million 

CE = - (CEbasel ,ne) = 0.0155 - 

0 to -50 Ibm: 

-- ACE 0.0155 - 0.0775 
Amass -50 

- 
Ibm 

Change in reliability of 0.01: 

units 
(E) (10.0) (0.60) + (s) (7.5) (0.20) + (E) (5.0) (0.05) unitr 

= 0.0784 - $100 $ million $ million 
CE = 

ACE - 0.0784 - 0.0775 (5%) - - -¶ 

Areliability - 0.01 increase i n  reliability l o  increase in reliability 

Addition of $l,OOO,OOO to cost: 

10 (0.60) -I- 7.5 (0.2) 5.0 (0.05) = o.0767 units 
$100 + $1 $ million 

CE = 

ACE \$  million 1 - = 0.0767 - 0.0775 = -7.67 X lo4 
Acost $ million 
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where 

Pysi = (2) Pi, and Pi is taken from Fig. 3, 

Wi = baseline worth from Fig. 2, 

Ci = total mission cost of $100 million, 
i 

R,, = reliability of the baseline system (0.90), 

and 

R,, = increased reliability (0.900 + 0.01 = 0.91) 

Use of Eq. (5) again gives 

ACE I 0.0784 - 0.0775 ( $ :;:on ) 
Areliability I = 0.01 increase in reliability 

- - 8*61 
lo-' increase in reliability 

The influence of subsystem cost on mission cost effective- 
ness can be demonstrated by increasing program cost by 
$1 million: 

z WiPi 

(10.0)(0.60) + (7.5) (0.20) + (5.0) (0.05) units 
100 + 1 $ million 

C E =  

units 
$million CE = 0.0767 

Use of Eq. (5) again gives 

ACE 
Acost 

- - 
1 $ million 

/ units 
I I 
[ $ million ) 

$ million 
= -7.67 x 10-4 

The inert gas 6-thrust-chamber system, as was mentioned 
before, is the baseline attitude propulsion system. To com- 

pute the relative cost-effectiveness of each of the other 
competitive systems, Eq. (5) is used with the proper influ- 
ence coefficients inserted (e.g., ACE/Amass; ACE/Acost). 

The differences in mass, cost, and reliability of each of 
the comparative systems from that of the baseline system 
can now be computed. For example, the single inert gas 
system with the 12-thrust-chamber arrangement would 
compare with the baseline system in the following manner: 

= 1501bm - 160 lbm = -10.0lbm 

ACOSt = Costcomparative sys tem ( lZT/C) - Costbasel Lne 

= 0.140 $ million - 0.120 $ million 

= + 0.02 $ million 

Areliability = reliability,,,,arat i v e  (12T/C) 

- reliabilitybasel i n e  

= 0.910 -0.900 = +0.010 

where increases in subsystem mass and cost will decrease 
cost effectiveness, and increases in reliability will increase 
cost effectiveness. Influence coefficients should not be 
used when deltas greatly exceed those that were used for 
influence Coefficient computation. 

The proper influence coefficients must be specified. 
Since there are only one cost and one reliability influence 
coefficient in this example, these two selections are obvi- 
ous. However, selection of the proper mass influence co- 
efficient requires a little more investigation. When the 
incremental mass value (Amass) is negative (Le., the com- 
parative subsystem has more mass than the baseline sub- 
system), then the influence coefficient which results in the 
minimum decrease of mission cost effectiveness should be 
selected. The mass influence coefficient for subtraction of 
mass from the payload would result in a decrease in cost 
effectiveness of 

ACE = ~ ACE 1 Amass Amass 

units 
million = [ 1.24 X ( $ )] [ -10lbml 

units - 
- -0.0124 $million 
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The mass influence coefficient for redundancy mass reduc- 
tion would result in a decrease in cost-effectiveness of 

ACE 
ACE = ~ Amass Amass 

units 

Ibm 
[ ( $million) 

= 1.95 x 10-4 

units 
$ million = - 0.00195 

[ - 10 lbm] 

The two decreases in cost effectiveness should be nearly 
equal if the hypothetical system were designed from a 
cost effectiveness basis; however, this is not always ac- 
complished in practice. The result is that for this particular 
system, the least loss in utility with an increase in auxiliary 
propulsion subsystem mass will result from a reduction 
in system redundancy mass. Therefore, for this example 
mission all comparative subsystems with a mass that is 
increased over that of the baseline subsystem (i.e., in- 
creases in auxiliary propulsion mass above baseline) should 
be compared using the mass influence coefficient calcu- 
lated for redundancy mass reduction. A similar analysis 
will show that all auxiliary propulsion subsystems with 
a lower mass than the baseline subsystem should be com- 

Fig. 6. Cost effectiveness vs mass 

pared using the mass influence coefficient calculated for 
scientific payload mass increase, because this will result 
in the greatest increase in cost effectiveness. Equation (5) 
can now be used to compare the baseline 6-thrust-chamber 
inert gas subsystem with the 12-thrust-chamber inert gas 
subsystem : 

CE (12T/C) = CEbaseline + - ACE 1 Amass Amass 

ACE I Areliability Acost + Areliability 

units 
CE (12 T/C) = 0.0775 $ million 

r 1 units \l '1 [ - 10 lbm] 
( $ million 1.95 x 10-4 161bm 

r f units )1 
\ $ millioi)] + 1-7.67 x io-' $ million [ +0.02 $million] 

r 1 units 1 
( $ million ) + 8.61 X lo-? 1 increase in reliability 

units 
$ million = 0.0764 

[0.01] 

(5) 

The remaining system cost effectiveness values were cal- 
culated, and are presented in the last column of Table 2 
and in Fig. 6. The recommended system, based on factors 
presented herein, has the maximum value of cost- 
effectiveness. This is the 6-thrust-chamber single inert gas 
system. 

C. Sensitivity Analysis 

In order to establish confidence in the results of a cost- 
effectiveness study, the sensitivity of these results to the 
original input data and assumptions must be calculated. 
In many instances the outcome of a cost-effectiveness 
analysis is indeed quite sensitive to the assumptions made. 
In this analysis, the assumptions that were made initially 
are modified, different values of the variables are assumed, 
and then the impact of the variations on the final evalua- 
tion is determined. If the results of the analysis are very 
sensitive to certain assumptions, either justification for the 
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use of the assumed values must be presented or the sensi- 
tivity of conclusions to the assumed values should be 
indicated. 

111. Subsynchronous Satellite Mission 

Typical subsynchronous satellites are the Nimbus and 
the Orbiting Geophysical Observatory (OGO). Extensions 
of these programs have been proposed. Earth Resources 
Technology Satellite A (ERTS A), an earth resources satel- 

0 
0 1 2 3 

TIME, yr 

Fig. 7. Average mission effectiveness on 
OGO I ,  11, and 111 

lite design based on existing satellite designs, is presently 
being studied under separate contracts at  General Electric 
and TRW Systems. This 30 million dollar satellite is 
intended to survey the earth's surface for resources. The 
baseline system will be designed for a one-year life, per- 
mitting repetitive coverage and seasonal observations. The 
spacecraft mass will be about 1300 lbm and will be placed 
in a circular, sun-synchronous (subsynchronous) orbit of 
about 500 nautical miles altitude. It will view the entire 
earth in 100-mile-wide increments in less than 3 weeks. 

TIME, yr 

Fig. 9. Predicted mission probability of success 
for ERTS A 

TIME, yr 

Fig. 8. Predicted mission worth for ERTS A 

TIME, yr 

Fig. 10. Predicted effectiveness for ERTS A 
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The ERTS spacecraft configuration will be similar to 
either Nimbus or OGO, therefore for the purpose of these 
calculations these missions are assumed equivalent. 

Assignment of mission worth and probability of success 
is based upon previous estimates of OGO and Nimbus 
effectiveness (Refs. 1 and 8). Effectiveness in this sense 
is defined as the product of the mission “worth and proba- 
bility of success. In an early study of the OGO, predicted 
values of spacecraft effectiveness were compared with the 
actual spacecraft effectiveness of OGO I, 11, and 111, 
resulting in a rather poor correlation. The poor correla- 
tion is mainly due to the omission of some system char- 
acteristics in the analysis model. If an average of the 
actual OGO spacecraft effectiveness is used, then Fig. 7 
results. For this specific mission the degradation of scien- 
tific instruments with time causes a slight decrease in 
mission worth; houever, worth is nearly constant with 
time (see Fig. 8). The mission probability of success was 

modified from an early estimate of a mean time between 
failure of three years to a mean time between failure of 
two years. Figures 8-10 present predicted worth, proba- 
bility of success, and effectiveness. The actual and pre- 
dicted effectiveness are nearly identical, as can be 
demonstrated by a comparison of Figs. 7 and 10. 

The effect of additional mass allocated to the auxiliary- 
propulsion system will not have a large impact on launch 
accuracy, since spacecraft mass is below the capability 
of the launch vehicle. The effect of subsystem mass on 
overall spacecraft cost effectiveness was studied in Ref. 1. 
Figure 11 is extracted from this report. From this curve 
and existing launch vehicle information, a representative 
mass influence coefficient can be derived. With the aid 
of Figs. 8,9, and 11 along with the cost-effectiveness tech- 
niques outlined in Section 11, mass, reliability, and cost 
influence coefficients can be calculated (see Table 4). 

Table 4. Influence coefficient calculations for ERTS A 

PiW, 

Z ci CEbnsellne = - 
i 

where 

P. = probability of success (Fig. 9) 
W, =I mission worth (Fig. 8) 

Z C, = total mission cost of $30 million 
i 

95 (0.546) -k 90(0.331) f 85 (0.18) = 6.33 units 
$30 $ million CEbnaellne = 

Addition or subtroction of moss: 

/ units \ 

(See Fig. 1 1 ,  extracted from Ref. 1) 
ACE \Smillion) - = 5.73 x lo-‘ 

Amass Ibm 

Chonge in reliobilitv of 0.01: 

- units 
- 6.39 - 

$ million 

= 6.41 ACE - 6.39 - 6.33 - 
Areliability 0.01 increose in reliobility increore in reliobility 

Addition of $l,OOO.OOO to cost: 

95(0.546) + 90(0.331) 85(0.18) = 6,13 units 
$30 -k $1 $ million 

CE = 

units 

$ million 

ACE - = 6.13 - 6.33 = -2.04 X lo-’ ( $  million) 
Acost 
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AUXILIARY PROPULSION SYSTEM MASS, Ibm 

Fig. 11.  Effect of auxiliary propulsion mass on 
Nimbus-type mission cost effectiveness 

The next step in the tradeoff of candidate thruster sys- 
tems is the definition of mission requirements. The 
auxiliary-propulsion subsystem must serve two functions : 
(1) low-level attitude control (momentum wheel unload- 
ing, tipoff rate reduction, and reference acquisition) and 
(2) high level orbital corrections (AV). The ERTS space- 
craft is three-axis-stabilized and requires 6 low-level 
thrusters (10 to 200 mlbf thrust).' These thrusters will 
perform initial tipoff rate reduction, reference acquisi- 
tion, and the necessary momentum wheel unloading. A 
total impulse of 455 Ibf-s is required for these 6 thrusters. 
The high-level AV thrusters (0.1 to 5 lbf) must correct 
the initial injection orbit to a sun-synchronous orbit (orbit 
with precessing period of 1 yr). Initial requirements for 
AV were nearly 150 ft/s including satellite orbital velocity 
and inclination. With improvements in the Thor-Delta 
launch vehicle injection accuracy, this requirement is now 
estimated at 50 ft/s, with no anticipated inclination error. 
This results in the requirement for two AV thrusters with 
a combined 2100 Ibf-s total impulse. The only low-level 
thruster system not considered for comparison is the sub- 
liming solid system for which the impulse bit require- 
ments are too stringent, 

The following combination of systems were considered: 

(1) Inert gas low level thrusters (LLT) (6T)4 with 
Inert gas high level thrusters (HLT) (2T)5 
Resistojet, NH, HLT (2T) 
Subliming solids HLT (2T) 
Inert gas resistojet HLT (2T)> 
Hydrazine catalyst HLT (2T) 

?In this report the following abbreviations are used: mlbf, milli- 

4Refers to number of required thrusters. 
"High-level thrusters using same propellant feed system as the low- 

pounds of force; mlbm, millipounds of mass. 

level thrusters. 

(2) Tridyne LLT (6T) with 
Tridyne HLT (2T)' 
Hydrazine catalyst HLT (2T) 
Resistojet, NH, HLT (2T) 
Subliming solid HLT (2T) 

(3) Inert Tridyne LLT (6T) with 
Tridyne HLT (2T)5 

(4) Hydrazine catalyst LLT (6T) with 
Hydrazine catalyst HLT (2T)5 

(5) Hydrazine resistojet LLT (6T) with 
Hydrazine resistojet HLT (2T)' 

(6) Hydrazine plenum LLT (6T) with 
Hydrazine plenum HLT (2T)' 
Hydrazine catalyst HLT (2T)5 

(7) Vaporizing liquid, NH, LLT (6T) with 
Vaporizing liquid, cold HLT (2T); 
Resistojet, NH, HLT (2T)5 
Subliming solid HLT (2T) 
Hydrazine catalyst HLT (2T) 

(8) Resistojet, NH, LLT (6T) with 
Resistojet, NH, HLT (2T); 

(9) Radioisojet, NH, LLT (6T) with 
Radioisojet, NH, HLT (2T)5 

(10) Electrolysis LLT (cold mode) (6T) with 
Electrolysis HLT (hot rnode)j (2T) 

Based on mission requirements, and with the aid 
Appendixes B, C, and D, mass, reliability, and cost we1 
calculated. Development cost was spread over four mi: 
sions. Tabulation of these values is presented in Table 
The inert gas low level/inert gas high level system in thc 
quad valve, single system, configuration is assigned as thc 
baseline for which cost effectiveness of 6.33 units/$ mil 
lion is calculated. System cost effectiveness is plotted as 6 

function of auxiliary-propulsion system mass in Fig. 1 4  
with the peak portions of the system curves presented in 
Fig. 13. 

The combination with the highest value of cost effec- 
tiveness is the hydrazine plenum/hydrazine catalyst sys- 
tem. The value of this system could be even higher if the 
passive (plenum-pressure) feed system were utilized. The 
next most favorable group of systems consists of combi- 
nations of thrusters with common feed systems, and sys- 
tems with eight similar thrusters. Included in this group 
are: 

(1) Inert Tridyne (6T) + Tridyne (2T). 

18 J P L  TECHNICAL R E P O R T  32-1505 



Table 5. Auxiliary-propulsion system data for ERTS A" 

Dual series 

146 

0.9621 

0.275 

6.179 

25 

0.9494 

0.505 

6.118 

25 

0.9494 

0.705 

6.079 

Single systems 

Quad 

149' 

0.9875' 

0.325" 

6.330' 

28 

0.9745 

0.555 

6.263 

27 

0.9745 

0.755 

6.229 

Double systems 

34.5 

0.9571 

0.375 

6.189 

36 

0.9598 

0.375 

6.205 

42 

0.9537 

0.505 

6.137 

40.6 

0.9581 

1.57 

5.955 

81 

0.9560 

0.505 

6.130 

Parameters 

38 

0.9823 

0.425 

6.350 

40 

0.9851 

0.425 

6.357 

45 

0.9788 

0.555 

6.287 

43.8 

0.9834 

1.61 

6.103 

84 

0.98 12 

0.555 

6.200 

16 T / C  
dual series Single Dual 

series 
Single 

144 

0.9392 

0.250 

6.038 

Quad 

Inert gas, Nz Mass 

Reliability 

cost 

CE 

152 

0.9883 

0.335 

6.331 

428 

0.996 

0.475 

6.192 

432 

0.999 

0.525 

6.198 

438 

0.9998 

0.625 

6.179 

Hydrazine direct 
catalyst ( E T )  

Mars 

Reliability 

Cast 

CE 

23 

0.9268 

0.480 

5.979 

32 

0.9948 

0.675 

6.372 

61 

0.995 

0.910 

6.309 

64 

0.997 

0.960 

6.309 

70  

0.9993 

1.060 

6.300 

Hydrazine direct 
thermal (ET) 

Mass 

Reliability 

cost 

CE 

23 

0.9268 

0.680 

5.941 

31 

0.9948 

0.875 

6.332 

59 

0.995 

1.310 

6.228 

62 

0.997 

1.360 

6.228 

69 

0.9993 

1.460 

6.218 

Hydrazine plenum (ET) Mass 

Reliability 

Cast 

CE 

33 

0.9343 

0.350 

6.047 

40 

0.9831 

0.435 

6.342 

90 

0.996 

0.675 

6.347 

94 

0.998 

0.725 

6.347 

100 

0.9997 

0.825 

6.333 

Vaporizing liquid (ET) Moss 

Reliability 

cost 

CE 

Mass 

Reliobility 

cost 

CE 

Mass 

Reliability 

cost 

CE 

35 

0.9369 

0.350 

6.079 

40 

0.9309 

0.480 

5.996 

39 

0.9353 

1.55 

5.818 

42 

0.9859 

0.435 

6.359 

73.5 

0.9860 

0.675 

6.292 

96 

0.996 

0.675 

6.343 

92 

0.995 

0.910 

6.291 

89 

0.996 

2.45 

5.982 

100 

0.998 

0.725 

6.343 

96 

0.998 

0.960 

6.297 

92 

0.998 

2.49 

5.984 

106 

0.9998 

0.825 

6.331 

102 

0.9996 

1.060 

6.283 

98 

0.9997 

2.57 

5.974 

Resistojet, NHI (ET) 

Radioisojet, NHI (ET) 68 

0.9859 

1.70 

6.086 

Tridyne (ET) 79 

0.9332 

0.480 

5.990 

87 

0.9884 

0.675 

6.300 

135 

0.996 

0.910 

6.272 

138 

0.998 

0.960 

6.273 

142 

0.9996 

1.060 

6.260 

Mass 

Reliability 

cost 

CE 

Mars 

Reliability 

Cost 

CE 

Mass 

Reliability 

cost 

CE 

Electrolysis (ET) 68 

0.8886 

1.2 

5.577 

78 

0.9168 

1.48 

5.696 

0.9483 

5.933 

0.9605 0.9859 

0.280 0.330 

6.19 6.34 

41 

0.9376 

0.250 

6.05 

50 

0.9894 

0.365 

6.36 

Inert Tridyne (6T) 
Tridyne (2T) 

'Mass, Ibm; cost, $ million; CE, units/$ million. 
bNumber in parentheses indicates number of required thrusters. 
'Baseline system configuration. 
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Table 5 (contd) 

Inert gas, NZ (6T) resisto- 
jet, NZ (2T) 

Mass 

Reliability 

113 

0.9859 

0.330 

6.341 

125 

0.9894 

0.365 

6.348 

Inert gas, NZ (6T) resisto- 
jet, NHI (2T) 

Mass 

Reliability 

cost 

CE 

57 

0.9724 

0.650 

6.220 

49 

0.9780 

0.650 

6.297 

70 

0.9797 

0.610 

6.267 

60 

0.9748 

0.690 

6.225 

53 

0.9838 

0.690 

6.287 

72 

0.9803 

0.620 

6.268 

29.3 

0.9892 

0.430 

6.388 

32 

0.9756 

0.790 

6.226 

32.8 

0.9950 

0.465 

6.416 

36 

0.98 14 

0.830 

6.253 

Vaporizing liquid, NH3 
(6TJ and subliming 
solid (2T) 

Mass 

Reliability 

cost 

CE 

53 

0.9773 

0.755 

6.225 

36 

0.9835 

0.430 

6.348 

37 

0.9734 

0.920 

6.183 

45 

0.9678 

0.920 

6.144 

59 

0.9750 

0.905 

6.184 

55 

0.9779 

0.785 

6.220 

39 

0.9859 

0.465 

6.354 

42 

0.9839 

1.070 

6.217 

49 

0.9749 

1.070 

6.156 

61 

0.9804 

1.025 

6.193 

Single systems 1 Double systems 

Parameters 
Single Dual series Quad 

16T/C I I dual series 
Single Dual 

series Quad 
I 1 

108 

0.9376 

0.250 

6.047 

109 

0.9605 

0.280 

6.188 

cost I CE 

52 

0.9249 

0.575 

5.933 

54 

0.9474 

0.600 

6.01 1 

Inert gas, Nz (6T) hydra. 
zine catalyst (2T) 

Mass 

Reliability 

cost 

CE 

44 

0.9236 

0.575 

5.929 

46 

0.9529 

0.600 

6.111 

Inert gas, Nz (6T) sublim- 
ing solid (2T) 

Mass 

Reliability 

cost 

CE 

67 

0.9435 

0.550 

6.049 

68 

0.9608 

0.570 

6.155 
I 1 

Hydrazine plenum (6T) 
hydrazine catalyst (2T) 

24.5 

0.9408 

0.355 

6.093 

27.2 

0.9279 

0.700 

5.942 

Mass 

Reliability 

cost 

CE 

Mass 

Reliability 

cost 

CE 

26.1 

0.9638 

0.380 

6.236 

29 

0.9506 

0.730 

6.080 

Vaporizing liquid, NHB 
(6T) and hydrazine 
catalyst (2T) 

50 

0.941 2 

0.700 

6.014 

51 

0.9585 

0.725 

6.118 

31 

0.9354 

0.355 

6.054 

33 

0.9583 

0.380 

6.196 

Reliability 

Vaporizing liquid, NH, 
(6T) resistojet, 
NH3 (2T) 

cost I CE 
I 

33 

0.9258 

0.830 

5.900 

35 

0.9484 

0.860 

6.037 

Reliability 

Tridyne (6T) and hydra- 
zine catalyst (2T) 

I :;t 

Tridyne (6T) and resislo- 
jet, NH:, (ZT) 

Mass 

Reliability 

cost 

CE 

41 

0.9205 

0.830 

5.862 

42 

0.9429 

0.860 

5.998 

Tridyne (6T) and sublim- 
ing solid (2T) 

Mass 

Reliability 

cost 

CE 

55 

0.9390 

0.830 

5.972 

56 

0.9562 

0.855 

6.076 
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(2) Vaporizing, NH, (6T) + resistojet, NH, (2T). 

(3) Inert gas (6T) + resistojet, inert gas (2T). 

(4) Hydrazine catalyst (8T). 

(5 )  Vaporizing, NH, (8T). 

(6) Hydrazine plenum (8T). 

(7) Hydrazine resistojet (8T). 

5 4 L  

The hydrazine resistojet low-level thrusters offer advan- 
tages over the hydrazine direct catalytic low-level thrust- 
ers. The increased cold thruster first pulse specific impulse 
of the resistojet thruster can lead to considerable mass 
savings when large quantities of propellant are required 
for momentum wheel unloading or other short pulse low 
duty cycle operation. The present resistojet hydrazine sys- 
tem must be penalized for its high development cost, since 
this system is still in early development. However, when 

A VAPOR171NG LIQUID AND SUBLIMING SOLID 
V VAPORIZING LIQIJID AND RESISTOJET, NH3 

TRIDYNE AND HYDRAZINE CATALYST 
0 TRIDYNE AND RESISTOJET, NH3 

TRIDYNE AND SUBLIMING SOLID 

it becomes fully developed, it can be expected to approach 
the hydrazine plenum/direct catalyst system combination 
in cost effectiveness (e.g., ERTS type of mission). The 
combination systems are ranked high in the comparison. 
Their high values of cost effectiveness is a direct result 
of the use of a common feed system, which reduces sys- 
tem cost and mass while increasing system reliability. The 
inert Tridyne low-level/reacting Tridyne high-level sys- 
tem combination was ranked high in the combination 
systems. The inert gas/inert gas resistojet system combi- 
nation has no duty cycle restrictions, while the vaporizing 
ammonia/ammonia resistojet system combination is lim- 
ited by heat transfer to pulse lengths less than 300 to 400 s .  
Both the vaporizing ammonia and hydrazine plenum 
8-thruster systems suffer from pulse length limitations. 

The inert gas 8-thruster system ranked next, followed 
by the Tridyne 8-thruster system. Since the mass influence 
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[1 TRIDYNE - 

120 140 I (  
AUXILIARY PROPULSION SYSTEM MASS, Ibm 

Fig. 13. Maximum auxiliary propulsion system cost effectiveness for the ERTS mission 

coefficient is small for this mission, the effect or cost effec- 
tiveness of mass savings is small. Although the 8-thruster 
Tridyne system is lighter than the inert-gas system and 
the inert gas/inert gas resistojet, its increased cost and 
slightly decreased reliability penalize the system. With 
the development of the Tridyne system, its cost will ap- 
proach that of the inert gas systems. As a result, the 
Tridyne system will become more favorable, exceeding 
inert gas and rivaling the inert gas inert gas resistojet 
system. The ammonia resistojet 8-thruster system is next 
most effective. 

The next highest ranking thruster systems are combi- 
nations of two independent systems. They are ranked in 
order of cost effectiveness as follows: 

(1) Inert gas (6T) and hydrazine catalyst (2T) combi- 

(2) Inert gas (6T) and subliming solid (2T) combina- 

nation. 

tion. 

(3) Vaporizing ammonia (6T) and hydrazine catalyst 
(2T) combination. 

(4) Vaporizing ammonia (6T) and subliming solid (2T) 

( 5 )  Inert gas (6T) and resistojet, NH, (2T) combination. 

(6) Tridyne (6T) and hydrazine catalyst (2T) combina- 

(7) Tridyne (6T) and subliming solid (2T) combination. 

(8) Tridyne (6T) and resistojet, NH, (2T) combination. 

combination. 

tion. 

The use of two types of systems in combination is costly. 
The inert gas (6T) and hydrazine catalyst (2T) combina- 
tion gives rise to the most cost effective system combi- 
nation. If mission cost is increased, then the increased cost 
of combining two systems with independent feed systems 
has a diminishing influence on cost effectiveness. 

The radioisojet and electrolysis systems are too costly 
for this mission, and have high initial masses. The total 
impulse of the auxiliary propulsion system was not great 
enough to result in substantial mass savings with either 
system. 
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The preferred configurations of all systems were either 
the quad-valve single system or the 16 T/C dual-series 
valve single system. This was due to the small increase 
in cost and mass with redundancy, balanced by greatly 
increased system reliability. Cost data was an important 
factor in the ERTS mission system tradeoffs. If more 
appropriate cost data becomes available, the application 
of this data to the system descriptions (Table 5 )  is sug- 
gested. With new cost data, additional system comparisons 
can be made. 

IV. Synchronous Satellite Mission 

Typical synchronous satellite missions are those of the 
Zntelsat family. The Zntelsat ZV, which is presently under 
joint development by Hughes and Comsat, is the largest 
and most complex of the Zntelsat family. The planned 
Zntelsat ZV satellite injection mass is 1300 lbm, with a 
cost between 150 and 200 million dollars. Useful satellite 
design lifetime has been planned for 7 yr. The spacecraft 
is spin-stabilized, and the position and orientation pro- 
pulsion system must perform the spinup immediately after 
vehicle separation. Injection into a near circular orbit is 
performed by a solid propellant apogee motor. 

Assignment of mission worth is based on the number 
of operating communication channels. The cost of satellite 
usage by customers is based on the amount of channel 
width used and length of time in use. Two economic 
factors affect the worth of satellite service. These are the 
demand for usage and the rate of inflation. The rates of 
expected demand and depreciation over a seven year 
period tend to balance each other resulting in a near 
constant worth assignment. Degradation in quality and 
loss of channels with time can be expected. The design 
goal is for 10 of 12 channels to be working after seven 
years (Ref. 9). A combination of the above data results 
in Fig. 14. One aspect of a communications satellite is 
that the allowed bandwidth is fixed and cannot be ex- 
panded. Thus, baseline worth of 12 channels cannot be 
increased by the mere addition of more communication 
channels. 

Reliability has been a subject of great concern in the 
Zntelsat program. Total utility is most strongly affected 
by increased mission life. In the Zntelsat ZV program, 
extensive studies have been conducted on the addition 
of redundancy to subsystems (Ref. 10). Several methods 
of redundancy additions were explored. The optimum 
method of redundancy addition is presented in Fig. 15. 
The probability of successful launch and orbit insertion 
was obtained from a combination of a reliability logic 

TIME, Y 

Fig. 14. Predicted worth for lnfelsaf IV 

0 
0 1 2 3 4 5 6 7 

TIME, 7 

Fig. 15. Predicted probability of success with added 
redundancy 

diagram, a fault tree, and judicious appointment of failure 
categories. 

From these curves and the techniques outlined in 
Section 11, mass, reliability, and cost influence coefficients 
can be calculated. These calculations are summarized in 
Table 6. 
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Table 6. Influence coefficient calculations for lntelsat IV 

where 

P, = probability of success (Fig. 15) 

W .  = mission worth (Fig. 14) 

C, = total mission cost of $175 million 

(1 1.71) (0.635) + (1 1.43) (0.626) + (1 1.14) (0.610) + (10.86) (0.584) + (10.57) (0.546) + (10.29) (0.508) + (10.00) (0.457) - o,247 units 
$175 $ million 

- CBbnseI ine  = 

Addition and Subtraction of mass to system redundancy: 

-I- 100 Ibm: 

(1 1.71) (0.635) f (1 1.43) (0.632) + (1 1.14) (0.626) + (10.86) (0.619) + (10.57) (0.606) f (10.29) (0.584) -k (10.00) (0.550) = o.264 units 
$175 $ million 

CE = 

0 to + 100 Ibm added 

ACE - 0.264 - 0.247 - -- - 1.7 X lo-' 
Amass 100 Ibm 

-80 Ibm: 

(1 1.71) (0.603) f (1 1.43) (0.527) + (1 1.14) (0.406) + (10.86) (0.305) + (10.57) (0.546) + (10.29) (0.508) + (10.00) (0.457) - o,145 units - 
$175 $ million 

CE = 

0 to -80 Ibm 

ACE - 0.145 - 0.247 
- = 1.28 x 

Amass - 80.0 I bm 

Change in reliability of 0.005 

(c) 0.996 (1 1.71) (0.635) + (-) (1 1.43) (0.626) -k (E::::) - (11.14)(0.610)+ ( ~ ::::) (10.86) (0.584) 

0.996 0.996 0.996 
f (E )  (10.57) (0.546) + ( E )  (10.29) (0.508) -k (x) (10.00) (0.457) 

units = 0.24825 ~ 

$175 $ million 
CE = 

/ units \ 
0.24825 - 0.247 \t) = 0.25 ACE - - 

Areliability 0.005 increase in reliability 

Addition of $l,OOO,OOO to cost: 

(11.71)(0.635) f (11.43)(0.626) f (11.14)(0.610) + (10.86) (0.584) 4- (10.57)(0.546) -k (10.29)(0.508) -I- (1o.w)(o.457) = o.246 CE = 
$175 -I- $1 

ACE - = 0.246 - 0.247 = -1.41 X lo-' 
Acast $ million 
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The next step in the tradeoff is the selection of the 
candidate systems. A look at the requirements of the 
position and orientation thrusters is necessary to further 
screen systems. The system has several functions. They 
are initial spinup, orientation, trim of circular orbit, and 
station keeping. Six thrusters are required; their orienta- 
tions are presented in Fig. 16. Continuous thrusting spinup 
thrusters will increase the spin rate of the satellite. Con- 
tinuous thrusting of the axial engines will impart a AV 
to the spacecraft in the axial direction. Pulsing of one of 
the axial thrusters will act to reorient spin axis. The radial 
engines on a properly timed pulse will impart a AV in the 
radial direction. The spinup maneuver is accomplished 
by two burns of the spinup thrusters, requiring a total of 
660 lbf-s impulse. Circularization of the orbit requires 
a A17 of about 175 ft/s. Station-keeping requirements 
are 7 and 180 ft/s/yr in the east-west and north-south 
directions, respectively. A total impulse of 54,000 Ibf-s is 
required for seven years of operation with an estimated 
10,000 actuations/thruster. All maneuvers are either long 
duration steady-state thrusting or long chain pulse mode 
operation (500 pulses). 

Twin tanks located 180 deg apart may be used to 
eliminate changes in the center of gravity. The initial 
supply of propellant during the spinup maneuver may be 
acquired by the use of retention screens or a small auxil- 
iary tank. Retention screens would be the simplest, light- 
est, and possibly most reliable. Once the spin is begun, 
propellant-pressurant separation is achieved. 

SPINUP 
ENGINE SPINUP 

ENGINE 

RADIAL 
ENGINE 

Fig. 16. lntelsat IV position and orientation system 

The gains in steady-state specific impulse of a hydra- 
zine resistojet thruster, operating at zero power and a 
thrust level above 0.1 Ibf over a hydrazine direct catalytic 
thruster are so small that only the direct catalytic thruster 
has been considered. The pulse mode operation eliminates 
the subliming solid unit from consideration (most of the 
station keeping requirements are met by pulse mode 
operation). Radioisojet systems have not been considered 
for the following reasons: 

(1) The steady-state or long pulse mode operation can- 
not be performed if the temperature and resulting 
performance are to remain high. 

(2) Long mission life leads to decay in radioactive 
thermal power; plutonium may be used but is quite 
expensive. 

(3) Preference for high-thrust (2 to 5 lbf) thrusters 
leads to large isotope heaters and thus major shield- 
ing requirements. 

system are possible. 
(4) Nuclear radiation effects on communications sub- 

The hydrazine plenum, vaporizing ammonia, and am- 
monia resistojet systems can be designed for pulse lengths 
of 200-300 s duration. The duty cycle must be modified 
to limit pulse widths and pulse chain lengths to less than 
200-300 s .  The following systems are worthy of serious 
considerations : 

(1) Inert gas, N,. 

(2) Liquid hydrazine, direct catalyst. 

(3) Liquid hydrazine, plenum. 

(4) Liquid ammonia, cold. 

(5) Liquid ammonia, resistojet. 

(6) Tridyne. 

(7) Electrolysis, water. 

Based on the mission requirements and Appendixes 
B, C ,  and D, mass, reliability, and cost were calculated. 
Development cost was spread over five missions. A tabu- 
lation of these values is presented in Table 7. 

The large spread of thruster system mass is noted. 
Before any cost-effectiveness tradeoffs can begin, the inert 
nitrogen and Tridyne systems must be eliminated from 
consideration. The mass of the inert gas system is greater 
than the spacecraft, apogee motor and propellant and 
spacecraft adapter. The mass of the Tridyne system is 
equal to the injected spacecraft mass. Two ammonia I 
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Mass 

cost 

Reliability 

3104.0 
0.235 
0.8822 

Mass 

cost 

Reliability 

CE 

322.0 

0.455 
0.853 
0.237 

Mass 

cost 

Reliability 

CE 

534.0 
0.355 
0.8619 
0.063 

Mass 

cost 

Reliability 

CE 

263.0 
0.455 
0.866 
0.248 

Mass 

cost 

Reliability 

1064.0 
0.455 
0.879 

~ 

Mass 

cost 

Reliability 

CE 

315.0 
1.12 

0.804 
0.222 

Mass 

cost 

Reliability 

CE 

300.0 
1.12 
0.804 
0.222 

Table 7. Auxiliary-propulsion system data for lntelsat IV” 

Parameters 
Single Systems I 

I Sinale I Dual series Quad 12 T / C  Dual series 

3110.0 
0.305 
0.980 

33 1 .Ob 
0.605b 
0.991 
0.262b 

Inert gas 1 Ibf 3105.0 

0.255 
0.9295 

3107.0 
0.295 

0.980 

324.0 

0.475 
0.899 
0.247 

326.0 
0.515 

0.947 
0.257 

Direct catalyst hydrazine 
4 to 2 Ibf 

540.0 
0.425 
0.958 
0.067 

Hydrazine plenum 
10 mlbf 

535.0 
0.375 
0.908 

0.066 

537.0 
0.4 15 
0.957 
0.068 

265.0 
0.475 
0.912 
0.261 

267.0 

0.515 
0.962 
0.275 

289.0 
0.605 
0.965 
0.273 

Resirtojet, NH3 
10 mlbf 

Resirtojet, NHJ 
50 mlbf 

Moss 

cost 

Reliability 

CE 

337.0 
0.475 
0.912 

0.234 

339.0 

0.515 
0.962 
0.244 

451.0 
0.605 
0.965 
0.090 

335.0 
0.455 

0.866 
0.227 

576.0 
0.355 
0.8689 
0.053 

577.0 

0.375 
0.91 55 
0.056 

579.0 
0.415 
0.9648 

0.058 

582.0 
0.425 

0.965 
0.057 

Vaporizing liquid NHJ 
10 mlbf 

Mass 

cost 

Reliability 

CE 

Tridyne 10 mlbf 1066.0 
0.475 
0.927 

1068.0 
0.515 

0.977 

1071.0 
0.605 
0.980 

318.0 
1.15 
0.862 
0.238 

352.0 
1.40 
0.968 

0.227 

Electrolysis, 1 Ibf 
( l a p  = 236 Ibf-s/lbm) 

322.0 
1.20 
0.925 

0.254 

307.0 
1.20 
0.925 
0.254 

Electrolysis, 1 Ibf 
( I r p  = 250 Ibf-s/lbm) 

303.0 
1.15 
0.862 
0.238 

337.0 
1.40 
0.968 
0.227 

“Mass, Ibm; cost, $ million; CE, units/$ million. 
bBaseline system configuration. 

resistojet systems have been considered (10 and 50 mlbf). 
Two electrolysis systems were considered ( I s p  of 250 and 
236 lbf-s/lbm). 

ducted about a design mass based on a hydrazine position 
and orientation subsystem. Incremental values of mass, 
cost, and reliability are calculated and the baseline value 
of cost effectiveness is modified, The resulting values of 
cost-effectiveness are presented in Table 7. Their values 
are plotted in Fig. 17. The values of cost effectiveness for 
the systems cluster in two groups. Hydrazine catalyst, 
water electrolysis, and ammonia resistojets combine to 
form the first group, which is significantly higher than 

The hydrazine dual-series valve, single system is as- 
signed as the baseline for which a cost effectiveness of 
0.247 units/$ million is calculated. The hydrazine system 
was selected as the baseline system since all Comsat and 
Hughes reliability and redundancy studies were con- 
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Fig. 17. Auxiliary propulsion cost effectiveness for 
lntelsat IV 

the second group, consisting of vaporizing ammonia and 
hydrazine plenum systems. 

The large mass variations between the design reference 
mass aud those required for either of the two systems in 
the second group presented problems in that the A mass 
values exceeded the amount of redundancy mass on the 
spacecraft. After the removal of 120 Ibm of redundancy, 
the spacecraft was reduced down to single system con- 
figurations. Additional mass removal was implemented 
by reduction in the communications payload, which has 
the effect of linearly decreasing the worth of the payload. 
As a result of the low subsystem reliability and decreased 
payload, the hydrazine plenum and vaporizing ammonia 
systems are unfavorable. 

Both the hydrazine direct catalyst and ammonia resisto- 
jet systems are favorable. The tradeoff between these two 
systems reduces to a function of what reposition times 
(thrust level) and power usage can be accepted. If a 
thrust level of 10 mlbf can be accepted and the power is 
available then the ammonia resistojet becomes the favor- 
able system. In all calculations, power has been penalized 
by the addition of the appropriate mass penalty. This 
penalty can only be imposed if the power is available. 
If the requirement for reposition and station keeping is 
strict then the hydrazine direct catalyst system is definitely 
the preferred auxiliary-propulsion system. Although the 
electrolysis system is favorable, its ranking must be quali- 
fied. The water electrolysis system is based on several 
theoretical calculations. The specific impulse delivered 
from an O,,”, thruster operating at a mixture ratio of 
8 to 1 is based on the use of large quantities of hydrogen 

for film cooling. However this thruster has not been 
operated at an 8-to-l mixture ratio. Spark plug and thrust 
chamber reliability calculations were based on a 2000OF 
chamber temperature. Temperatures in excess of this will 
lead to lower component reliability, 

V. Planetary Mission 
The Thermoelectric Outer Planets Spacecraft (TOPS) 

has been selected as a representative planetary vehicle. 
TOPS is representative of a spacecraft which would be 
launched during the 1977-1979 period to use the outer 
planet gravitational fields with corrective AV maneuvers 
to fly a Grand Tour trajectory. The four-planet plan has 
been selected as a design mission (see Fig. 18). The flyby 
of Jupiter, Saturn, Uranus, and Neptune will take roughly 
10 yr. Radioisotope thermoelectric generators (RTG) are 
provided for spacecraft electrical power and thermal con- 
trol. As a consequence, the penalty for power usage is 
great (approximately 0.59 lbm/W). 

An assignment of mission “worth to each of the four 
planetary encounters is difficult. Several factors make 
scientific information returned from Jupiter important: 

(1) Jupiter is presently assumed in a primordial state 
similar to when life originated on earth. 

(2) The presence of low frequency radio waves emanat- 
ing from the approximate location of one of its 
moons (Io). 

(3) High measured equilibrium surface temperature of 
approximately 129OK compared to a theoretical 
equilibrium temperature of 105OK. 

(4) Increase in emissivity of one of its moons as it 
travels around the night side of the planet. 

(5) The composition of its atmosphere, especially the 
relatively large quantity of He suspected in the 
atmosphere. 

There are other reasons for the exploration of Jupiter. 
The importance of data returned from Saturn is less 
important; however; there are a great number of un- 
answered questions concerning this planet. The assign- 
ment of representative mission “worth” is presented in 
Fig. 19. 

The assignment of mission probability of success, which 
involves determining the effects of redundancy on space- 
craft life, is a complete study in itself. An early attempt 
to assign mission probability of success and redundancy 
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Fig. 18. The Grand Tour trajectory 
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Fig. 19. Predicted worth of planetary encounter 

SATURN 
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effects was carried out at JPL in 1968. A principal curve 
extracted from this study is presented in Fig. 20. In order 
to assess the impact of additional scientific payload mass, 
a further study was undertaken; the curve in Fig. 21 is 
the result of this study. The addition of 1.0 Ibm of scientific 
payload requires 0.8 lbm support equipment. 

I 
URANUS 

ENCOUNTER 

From these curves and the techniques outlined in 
Appendix B, mass and cost influence coefficients can be 
calculated. These calculations are summarized in Table 8. 

1 

NEPTUNE 
ENCOUNTER 

The second step in a thruster tradeoff is the selection of 
the candidate systems. With the aid of the above deter- 
mined influence coefficients and power penalty assump- 

tioris, a screening of candidate systems is appropriate. 
Resistojets (both ammonia and inert gas feed) require 
around 100 W of electrical power to operate in the 10-mlb 
thrust range (200O0F). The anticipated conversion factor 
of 1.7 W/lbm puts the mass for these systems in excess of 
any of the other considered systems (range 7 to 30 lbm). 

A look at the requirements of attitude propulsion 
thrusters is necessary to further screen systems. The sys- 
tem will perform three primary functions. They are initial 
tipoff rate reduction, reference acquisition, and periodic 
unloading of the momentum wheels (TOPS is 3-axis stabi- 
lized). The tipoff requirement is for the steady-state oper- 
ation of the required jets to suppress initial roll rates (up 
to 300 s of operation). This will require a maximum total 
impulse of 25 Ibf-s. Acquisition will require an additional 
25 lbf-s total impulse. The tentative momentum wheel 
unloading requirement is for 1000 unloadings of each 
wheel; an estimate of 150 lbf-s is required for this opera- 
tion. Both operations can be performed with thrusters in 
the 10-100 mlbf thrust range. These calculations were 
based on moment arms of 2 ft. 

The long (300 s )  steady-state thrust places restrictions 
on the design of both the cold ammonia system and the 
hydrazine plenum systems. Both systems suffer from ther- 
mal limitations in opposite respects. Sufficient heat-transfer 
area must be included in the ammonia system design to 
allow for the complete vaporization of liquid ammonia. 

MISSION TIME, IO3 h 

Fig. 20. Effects of subsystem redundancy on TOPS mission success-probability 
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PAYLOAD WEIGHT, Ibm 

Fig. 21. TOPS mission value vs payload weight 

The hydrazine plenum system must be designed to dis- 
sipate the excessive heat generated during the tipoff ma- 
neuver. Both of these systems can be designed to meet 
the overall system requirements. The advantage of water 
electrolysis systems is the relatively high specific impulse 
achieved with combustion (hot mode) of the generated 
bipropellants. However, the initial mass (electrolysis cell 
and stored tipoff propellant) is excessive. This tends to 
eliminate electrolysis units from consideration. The re- 
quirement for small impulse-bit operation eliminates 
“valveless” subliming solid systems from consideration 
because of their long on-off transients. The following 
systems are suitable for serious consideration: 

(1) Inert gas. 

(2) Liquid hydrazine, direct catalyst. 

(3) Liquid hydrazine, resistojet. 

(4) Liquid hydrazine, plenum. 

(5)  Liquid ammonia, cold. 

(6) Liquid ammonia, radioisojet. 

(7) Tridyne. 

All systems consist of a baseline of 6 thrusters (*roll, 
t y a w ,  *pitch), The thrust level is set at a nominal 
50 mlbf, which may be altered slightly from system to 
system. 

Based on the above-mentioned mission requirements 
and the aid of Appendixes B, C, and D, mass, reliability, 
and cost were calculated. Development costs were spread 
over two missions. A tabulation of these values is pre- 
sented in Table 9. The inert gas, single solenoid, double 
system is assigned as the baseline for which a cost- 
effectiveness of 0.3421 units/$ million is calculated. Incre- 
mental values in mass, reliability, and cost are calculated 
and the baseline value of cost-effectiveness is modified. 
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Table 8. Influence coefficient calculations for TOPS 

Z PCW. 

vhere 

P. = probability of success (Fig. 20) 

Wi = mission worth (Fig. 19) 

Z Ci  = total mission cost of $200 million 

(33.5) (0.83) 4- (27.5) (0.76) 4- (21.0) (0.57) -k (18.0) (0.43) = o,342 units 
C E b a s e l i n r  = $200 $ million 

Addition or subtraction of mass to system redundancy: 

- 150 Ibm: 

150 to -150 Ibm added or subtracted: 

/ units \ 
4CE - 0.255 - 0.342 = 5.81 lo.4 (-1 -- 

Amass -150 Ibm 

Addition or subtraction of mass to scientific payload: 

4-45 Ibm + (45) (0.8) support mass: 

units :;: CEbaseiioe = 0.371 ___ $ million CE = - 

0 to 72 Ibm: 

f units 
\ $ million 1 = 4.06 X 10.' 4CE - 0.371 - 0.342 

-- 
4mass 72 Ibm 

-45 Ibm - (45) (0.8) support mass: 

units 
(0.342) = 0.293 ~ $ million CE = - 

1750 

0 to -72 Ibm: 

4CE - 0.293 - 0.342 = o.697 -- 
4mass -72 Ibm 

Change in reliability of 0.002: 

/ units \ 
0.343 - 0.342 ~~) = 0.345 ACE - - 

4reliobility 0.002 increase in reliability 

Addition of $l,oO0,oO0 in cost: 

(33.5) (0.83) 4- (27.5) (0.76) + (21.0) (0.57) -k ( 1  8.0) (0.43) = o.340 units 
$200 + $1 $ million CE 1 

E = 0.340 - 0.342 = -1.7 X lo-' Acost $ million 
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Table 9. Auxiliary-propulsion system data for TOPS" 

Inert gas, Nz 50 mlbf 

Double systems 

Mass 

Reliability 

Cast 

CE 

Single systems 

Quad Dual 
series Single 

12.48 

0.951 3 

0.250 

0.336 

8.55 

0.949 

0.400 

0.337 

7.15 

0.944 

0.500 

0.336 

Parameters 

13.68 16.08 

0.9691 0.9878 

0.270 0.3 10 

0.342 0.347 

9.75 12.25 

0.9668 0.985 

0.420 0.460 

0.343 0.348 

8.35 10.75 

0.961 0.980 

0.520 0.560 

0.341 0.347 

Vaporizing, NHI 10 mlbf 

Hydrazine direct catalyst 
50 mlbf 

Mass 

Relio bi I i ty 

Cast 

CE 

Mass 

Reliability 

cast 

CE 

18.9 

0.998 

0.940 

0.348 

17.6 

0.998 

1.34 

0.341 

20.7 

0.999 

0.740 

0.348 

26.16 

0.999 

0.940 

0.345 

37.2 

0.999 

3.14 

0.335 

19.4 

0.999 

0.740 

0.349 

23.7 

0.9996 

1.02 

0.346 

22.4 

0.9996 

1.42 

0.346 

23.7 

0.9997 

0.820 

0.347 

31.0 

0.9997 

1.02 

0.342 

42.0 

0.9997 

3.22 

0.332 

22.4 

0.9997 

0.820 

0.348 

Hydrazine resistojet 
50 mlbf 

Mass 

Reliability 

cost 

CE 

7.1 

0.944 

0.900 

0.340 

8.2 10.6 

0.961 0.980 

0.920 0.960 

0.341 0.346 

Hydrazine plenum, 
active 50 mlbf 

Tridyne 10 mlbf 

Mass 

Reliability 

Cost 

CE 

Mass 

Reliability 

cos1 

CE 

8.15 

0.946 

0.400 

0.336 

9.35 1 1.75 

0.964 0.983 

0.420 0.460 

0.342 0.347 

9.90 

0.947 

0.500 

0.337 

17.2 

0.948 

2.20 

0.330 

7.50 

0.946 

0.400 

0.339 

11.10 13.50 

0.964 0.983 

0.520 0.560 

0.342 0.347 

18.4 20.8 

0.966 0.984 

2.22 2.26 

0.336 0.341 

8.70 11.10 

0.964 0.983 

0.420 0.460 

0.345 0.350 

~ 

12 T /C  
Dual series 

Single Quad 

39.48 

0.9998 

0.5 10 

0.337 

series 

0.999 

0.999 

0.740 

0.347 

32.2Eb 

0.99ah 

O.45Ob 

0.342b 

19.6 

0.997 

0.700 

0.348 

17.88 

0.9884 

0.320 

0.346 

13.95 

0.986 

0.470 

0.347 

13.25 

0.995 

0.650 

0.351 

13.0 

0.995 

1.05 

0.350 

26.8 

0.9998 

0.820 

0.345 

16.5 

0.997 

0.900 

0.349 

15.2 

0.997 

1.30 

0.349 

13.55 

0.983 

0.470 

0.347 

18.3 

0.997 

0.700 

0.349 

23.76 

0.997 

0.900 

0.346 

34.8 

0.997 

3.10 

0.336 

16.18 

0.988 

0.650 

0.347 

33.0 

0.986 

2.35 

0.334 

Radioisojet, NH, 10 mlbf I Mass 

Reliability 

cost 

12.90 

0.983 

0.470 

0.349 

17.0 

0.997 

0.700 

0.350 

Hydrazine plenum, 
passive 50 mlbf 

'Mass. Ibm; cost, $ million; CE, units/$ million. 
bBaseIine system configuration. 

The development cost is spread over two missions. The 
resulting values of cost-effectiveness are presented in 
Table 9. 

tion, is the optimum system for a TOPS-type mission. 
Hydrazine plenum and hydrazine resistojet systems are 
next in preference. The cold ammonia system is next in 
line after the hydrazine systems. Inert gas (nitrogen) was 
next with the Tridyne system immediately following. The 
least favorable system of the cost effectiveness tradeoff 
was the ammonia radioisojet, since the two 3-thruster 
clusters have an initial mass of over 10 Ibm. Included in 
this curve is a hydrazine plenum system utilizing a passive 
pressure control device. The assignment of a reliability 

The general trend of subsystem cost effectiveness as a 
function of its level of redundancy is a curve with a maxi- 
mum cost effectiveness located somewhere between the 
redundancy extremes (see Fig. 22). The maximum portion 
of Fig. 22 is enlarged in Fig. 23. Hydrazine direct catalyst 
in the 12 T/C dual-series valve, single system configura- 
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0.3525 
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12 T/C DUAL-SERIES 

SINGLE SYSTEM 7 
0.3510 

I I I I I o DIRECTCATALYST I 

n TRIDYNE 
0 RADIOISOJET 

0 I 0 10 20 30 40 50 M) 70 

AUXILIARY PROPULSION SYSTEM MASS, Ibm 

Fig. 22. Auxiliary propulsion system cost effectiveness 
for TOPS mission 

to this feed system was arbitrary since no data has been 
generated. One point that should be stressed is that de- 
pending on the duty cycle, a passive pressure control type 
hydrazine plenum system or a hydrazine resistojet in the 
low millipound (on the order of 10 to 30 mlbf) thrust level 
is potentially more favorable than a hydrazine direct 
catalyst system. 

The most favorable redundancy concept varied from 
system to system. The gas feed systems (Tridyne and inert 
gas) maximize with the quad valve-single system config- 
uration. The hydrazine direct catalyst and resistojet sys- 
tems peak with the 12 T/C dual-series valve single system 
configuration. The relatively low reliability of the valve- 
thruster arrangement is most greatly enhanced in the 
12 T/C dual-series valve single system. Finally, the hydra- 
zine plenum and vaporizing ammonia systems reach a 
maxima at the single-valve double system configuration. 
It is noted that the reliability of the two feed systems 
is low due to the plenum-control valve loops in both 
systems; thus, the 12 T/C dual series valve single system 

0 DIRECT CATALYST 
0 INERT GAS 

HYDRAZINE PLENUM 
A HYDRAZINE RESISTOJET - 0.3520 

AUXILIARY PROPULSION SYSTEM MASS, Ibm 

Fig. 23. Auxiliary propulsion system cost effectiveness 
for TOPS mission 

is favorable. The ammonia radioisojet system favors the 
quad-valve single system configuration. The reliability 
parameter is dwarfed by mass consideration in this system. 
In summary, the auxiliary-propulsion tradeoff applied to 
the TOPS mission results in the following system ranking: 

(1) Hydrazine direct catalyst, 12 T/C dual series valve, 
single system. 

(2) Hydrazine resistojet, 12 T/C dual series valve, sin- 
gle system. 

(3) Hydrazine plenum, passive feed, quad valve, single 
system. 

(4) Hydrazine plenum, single valve, double system. 

(5) Vaporizing ammonia, single valve, double system. 

(6) Inert gas, nitrogen, quad valve, single system. 

(7) Tridyne, quad valve, single system. 

(8)  Radioisojet. 
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VI. Conclusions (5) Inert gas. 

(6) Tridyne. The usefulness of cost effectiveness as a comparison 
tool must be stressed. Since system comparison or tradeoff 
must be preformed in the light of a particular mission, 
the mission requirements will influence the tradeoff in a 
variety of ways. Cost effectiveness becomes the method 
by which systems can be compared. The exact agreement 
with the results of Sections 111, IV, and V is not necessary 
to acknowledge the usefulness of this methodology. If 
other system inputs are preferred or other mission profiles 
are under consideration, then the application of cost- 
effectiveness techniques to these new system inputs and 
missions is strongly encouraged. It is felt that this report 
provides a useful tradeoff technique which can be applied 
to any auxiliary-propulsion system selection. 

The mission analyses provide several interesting and 
noteworthy results. The subsynchronous (ERTS) mission 
tradeoff results in the following system ranking: 

(1) Combined systems: 
(a) Hydrazine plenum (6T) and hydrazine catalyst 

(b) Inert Tridyne (6T) and Tridyne (2T). 
(c) Vaporizing NH, (6T) and resistojet, NH, (2T). 
(d) Inert gas (6T) and inert gas resistojet (2T). 

(2T). 

(2) Single systems: 
(a) Hydrazine direct catalyst (8T). 
(b) Vaporizing NH, (8T). 
(c) Hydrazine plenum (8T). 
(d) Hydrazine resistojet (8T). 
(e) Inert gas (8T). 
(f) Tridyne (8T). 

The synchronous (Zntelsat ZV) mission tradeoff results 
in the following system ranking: 

(1) 10-mlbf resistojet, NH,. 

(2) Hydrazine catalyst. 

(3) Water electrolysis. 

(4) 50-mlbf resistojet, NH,. 

The planetary (TOPS) mission tradeoff results in the 
following system ranking: 

(1) Hydrazine catalyst. 

(2) Hydrazine resistojet. 

(3) Hydrazine plenum. 

(4) Vaporizing NH,. 

For the ERTS mission, the use of combined systems 
seems to give rise to the maximum value of cost effective- 
ness. The mutual feed system acts to reduce the total sys- 
tem mass and cost. The combination of high-performance, 
high-level thrusters with low-level thrusters will also act 
to reduce system mass. The combination of hydrazine 
plenum low-level thrusters with hydrazine catalyst high- 
level thrusters appears to provide the optimum configura- 
tion. 

The Zntelsat ZV mission has several interesting results. 
The 10 mlbf NH, resistojet system seems to be the opti- 
mum system assuming its response time (thrust level de- 
pendent) and power usage can be accepted. The hydrazine 
catalyst system is second behind the ammonia resistojet. 
The hydrazine catalyst system, however, does not suffer 
from duty cycle limitations. 

The TOPS mission results in a tradeoff between two 
top contenders. The hydrazine catalyst system is preferred 
over a hydrazine resistojet system. Due to the high penalty 
for powcr on the TOPS mission, the hydrazine resistojet 
system was severely penalized for the power required for 
its operation. With more advanced development (de- 
creased development cost), this system will become more 
attractive. If the passive pressure control is implemented 
in the hydrazine plenum system, then it becomes a close 
contendcr to thc catalytic system. The thrust level selected 
was 50 mlbf. If this thrust level is decreased by future mis- 
sion criteria, the hydrazine plenum system will surpass the 
catalytic system (at approximately 10 to 30 mlbf) in cost 
effectiveness. 

VII. Recommendations 

Several systems should be studied in greater detail. The 
hydrazine catalyst system was found to be favorable in 
all three missions to a varying degree. It was found to be 
the most favorable auxiliary-propulsion system in the 
planetary mission. Although considerable effort has gone 
into the development of the hydrazine catalytic thrusters 
in higher thrust levels (>0.5 Ibf), low-thrust (0.05 Ibf) 
catalytic hydrazine technology to date is somewhat lim- 
ited. Increased effort in this area is warranted. 

The hydrazine plenum system ranked third in the plan- 
etary mission example and first (when coupled with cata- 
lytic high level thrusters) in the subsynchronous mission, 
The passive plenum system is attractive and should be 
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explored more deeply. The hydrazine plenum-hydrazine 
catalyst thrust level tradeoff point should be redefined for 
a passive plenum system. 

The hydrazine resistojet thruster is constrained by a 
large development cost. With increased development 
(hence decreased cost), this system will surpass a catalytic 
hydrazine system (at 50 mlbf) provided a low duty cycle 
(< 1%) total impulse in excess of 300 lbf-s is required. For 
any mission with these requirements, a close look at the 
hydrazine resistojet system is warranted. 

The inert gas system will see continual use in systems 
with low total impulse requirements and small mass influ- 
ence coefficients (OGO, Nimbus, and Mariner). The com- 
bination of inert gas low-level thrusters with inert gas 
resistojet high-level thrusters was found favorable in the 
subsynchronous mission. 

The Tridyne system was found to be favorable for orbit 
correction when the attitude-control thrusters are inert 
(nonreacting) low-level thrusters (ERTS mission). With 
decreased system cost, the Tridyne system will become 
even more attractive. Development of the Tridyne thruster 
into a flight-qualified system is suggested. 

The ammonia resistojet (10 mlbf) system was found to 
be the optimum auxiliary-propulsion system for the large 
impulse, synchronous satellite under consideration. The 
careful definition of allowable thrust levels and response 
times is necessary before an ammonia resistojet system is 
selected. The potential for these systems is great and they 
should see increased use in the following years. 

The water electrolysis system was found to be the 
third most preferred auxiliary-propulsion system for the 
lntelsat ZV mission. This was based on O,/H, spark 
thruster predictions provided by the Marquardt Cor- 
poration. This system has not been developed into flight 
hardware yet, although the feed system has been demon- 
strated. Present thruster technology tends to limit this 
system to a less than optimum maximum specific impulse. 
With improved thruster performance at high fuel-oxidizer 
mixture ratios, this system will become more attractive. 

The following systems did not appear to be competitive 
in these three mission tradeoffs: hydrazine electrolysis, 
subliming solid, “cap pistol,” “honeycomb,” and radio- 
isojets. 

Tables of component mass, tank mass, component reli- 
ability, system reliability equations, redundancy reliability 
equations, and system costs are provided in the Appen- 
dixes. They may be modified if other more pertinent data 
are available or preferred. The component and system 
data provided are averaged over several designs, and 
exact system data will probably differ from those values 
presented herein. 

This report has not considered electric propulsion sys- 
tems in its detailed parameterization. It is recommended 
that this study be expanded to include ion thrusters, pulsed 
plasma thrusters, and colloid thrusters. A more complete 
survey of auxiliary-propulsion sys tern costs is recom- 
mended. Parameterization of system characteristics should 
be expanded to include volume, momentum wheel inter- 
actions, position error, and flexibility of operation. The 
system reliability equations should be expanded to include 
more sophisticated redundancy concepts. 
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Nomenclature 

Ci 

CE 

R N S  

RWSP (X) 

RWSP (baseline mass) 

T 

T/C 
Wi 

mission cost ($ million) where 2 Ci = total mission cost 
i 

units 
cost effectiveness, ($million) 

baseline cost effectiveness, ($:::on) 

mission probability of success, where i refers to a time increment 

reliability of the baseline auxiliary propulsion system 

mission probability of success including modified subsystem reliability, where i refers to a 
time increment 

increased reliability of a comparative subsystem 

relative worth of scientific payload at a payload mass of X lbm, (units) 

relative worth of scientific payload at the baseline payload mass, (units) 

minimum number of thrusters required to control spacecraft 

actual number of thrusters in the auxiliary propulsion system 

worth of mission, where i refers to a time increment, (units) 

ACE 
Acost 

ACE 
Amass 

ACE 
Are 1 i a b i 1 i ty 

Acost 

Amass 

Areliability 

\ $ million ) 
lbm mass influence coefficient, 

1 units 1 ~~ 

( $ million ) 
reliability influence coefficient, increase in reliability 

difference in comparative subsystem cost and the baseline subsystem cost, where increases 
in cost above baseline cost are positive, ($ million) 

difference in baseline subsystem mass and comparative subsystem mass, where increases in 
mass above baseline mass are negative, (lbm) 

difference in comparative subsystem reliability and the baseline subsystem reliability, 
where increases in reliability above baseline reliability are positive 
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Appendix A 

Available Thruster Systems 

Spacecraft 

Pioneer 

OGO A, B, C 

OGO D 

Vela 111 

Nimbus D 

Discos 

Described herein is an outline of the various system 
configurations and development status of various auxiliary 
propulsion systems. These systems can be divided into four 
categories: liquid propellant, solid propellant, gaseous 
propellant, and electric. These categories can be further 
subdivided as shown in Fig. A-1. Thermal heaters are also 
included in Fig. A-1. These devices can be considered as 
subsets of the liquid, solid, or gas system headings. Both 
electrical and nuclear heating sources are included. Not 
all the systems in Fig. A-1 will be discussed herein. Be- 
cause of the scope of this report (satellite and space probe 
attitude propulsion selection criteria), high-thrust ( >5 lbf) 
(auxiliary propulsion systems) have not been included. 
For thrust levels below 5 lbf with mission total impulse 
requirements below 75,000 lbf-s bipropellant liquid sys- 
tems become undesirable. 

Specific 
System Storage Thrust impulse, 

Ibf-8 Propellant weight, pressure, level, - 
Ibm 

nitrogen 9.6 3250 0.20 72 

argon 37.0 4000 0.050 52 

Ibm psi0 Ibf 

krypton 60.0 4000 0.050 37 

nitrogen 9.6 4000 0.20 72 

Freon 14 275.0 2000 0.2-0.5 45 

Freon 14 13.0 3000 0.001 45 

1. Gas Systems: Inert Monopropellant 

The inert monopropellant, or cold gas system has flown 
on all Ranger, Mariner, and Surveyor spacecraft, Orbiting 
Astronomical Observatory (OAO), Nimbus, Orbiting Geo- 
physical Observatory (OGO), Pioneer, Vela, and many 
more. As a result of its extensive use, the Mariner inert 
gas system has been chosen as a datum for system com- 
parisons in this study. The inert gas control system will 
continue its wide use on future missions whose mass influ- 
ence coefficients are low, since the inert gas system is both 
inexpensive and highly reliable. 

If ideal gases are compared for total impulse delivered 
from a given tankage and propellant mass, nitrogen is 
found to have the optimum molecular weight. This is due 

to the increase in density with molecular weight, which 
leads to reduced tankage weight. Although hydrogen, with 
its low molecular weight, has a higher specific impulse 
than nitrogen, its low density leads to excessively heavy 
tanks. When heavy gases such as Freon 14 (nonideal gas) 
are considered, the effect of compressibility becomes 
important. Freon 14 provides a larger total impulse per 
pound of system than nitrogen. 

A typical inert gas system is diagrammed schematically 
in Fig. A-2. A demonstration system is shown in Fig. A-3. 
Gas storage pressures range from lo00 to 4500 psia, tak- 
ing advantage of compressibility where possible. 

The typical system consists of a propellant tank, fill 
valve, start valve, filter, regulator, low-pressure relief 
valve, two pressure transducers, control valves, and noz- 
zles. The fill valve is capped after filling to provide higher 
reliability. The relief valve may be protected by a burst 
disk, at a pressure slightly higher than the relief valve. 
This will prevent loss of gas caused by small relief valve 
leaks. System activation occurs with the firing of the squib 
start valve. A filter is employed downstream of the start 
valve to remove any contaminants which may have origi- 
nated during squib firing. Line pressures are monitored by 
pressure transducers, the high pressure reading indicating 
the quantity of remaining propellant. Solenoid valves are 
provided for flow control. 

Some flight systems may not contain all the eomponents 
described in the typical system. The Mariner inert gas 
system has a tank, regulator, control valves, and nozzles. 
The control valves act as built-in relief valves. 

Total 
impulse, 

Ibf-8 

72 
000 

1300 

190 

300 
200 

~~ 
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Fig. A-1 . Thruster systems 
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Fig. A-2. Typical inert gas auxiliary propulsion system 

Fig. A-3. OGO pneumatic system demonstrator (photo 
courtesy of TRW Systems) 

Some of the propellants which have been considered 
are: hydrogen, helium, neon, nitrogen, argon, krypton, 
xenon, Freon 14, and methane. System mass and perform- 
ance are presented in Appendix B. The only power 
requirement is that for instrumentation and valve actua- 
tion. Appendixes C and D present reliability and cost 
considerations, respectively. 

The vast number of flight inert gas systems prohibits a 
complete list of system characteristics. Some system char- 
acteristics are presented in Table A-1. Many inert gas 
systems have several years of flight experience. The 
Mariner type system has been in use for nearly 10 yr. 

Areas for future development are restricted to com- 
ponent reliability improvements. Valve leakage rates of 
2 to 10-cc/h are considered typical. The Mariner system 
is designed with an expected 5 cc/h leakage rate. Brazed- 
in-place connections are currently state of the art and will 
be used widely in the future. System and component re- 
dundancy concepts will undergo increased exploration. 

11. Gas Systems: Tridyne 

One of the serious drawbacks of the inert gas system is 
its low specific impulse, which results in large quantities 
of propellant and excessive tankage. The Tridyne concept 
was conceived during an attempt to reduce the required 
tankage mass. The specific impulse of the Tridyne gas 
mixture will greatly exceed that of cold nitrogen, while the 
gas density is almost the same as that of nitrogen. The 
Tridyne mixture (patented by Rocketdyne, Division of 
North American Rockwell Corp.) is 85% nitrogen, and the 
remaining 15% a stoichiometric mixture of hydrogen and 
oxygen. The feed system utilized in the Tridyne system is 
the same as the inert gas system. The Tridyne thruster 
contains a catalyst that causes the hydrogen and oxygen to 
combine exothermically. In order to minimize thrust 
buildup time and reduce thermal losses, it is desirable to 
maintain the catalyst bed at approximately 600OF. This 
can be accomplished through the use of a 1.5-W heater. 
Theoretically, the temperature of the gas mixture in the 
chamber should be approximately 1500°F. However, due 
to unavoidable heat losses, the actual temperature is 
approximately 1300OF. 

The Tridyne mixture is favorable for the following 
reasons: 

(1) Mixture will not allow propagation of a detonation 
wave. 

(2) Mixture has near-optimum ideal gas molecular 
weight for a gas system. 

(3) The ignition of the hydrogen-oxygen mixture is well 
known from past programs. 

(4) Gas mixture is compatible with spacecraft materials. 

(5 )  Adiabatic flame temperature is moderately low to 
prolong catalyst life. 

The typical Tridyne system is shown in Fig. A-4. The 
feed system components are exactly the same as those 
discussed in the inert gas system. The Tridyne thruster is 
under development at Rocketdyne, Division of North 
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Fig. A-4. Typical Tridyne auxiliary propulsion system 

Fig. A-5. Tridyne thruster 

American Rockwell. This thruster is shown in Fig. A-5. 
The design requirements are listed in Table A-2 (Ref. 11). 

Since this system is presently under development, final- 
ized thruster performance data are not yet available. The 
system has not yet been flight qualified. System integra- 
tion will rapidly follow completion of the preliminary 
thruster development phase. 

Completion of testing on the preliminary design will 
be essential to development of this concept. A design 
which features a cluster of three nozzles has been pro- 
posed. Its fabrication and testing are a large factor in 
system development. The problems of catalyst selection 
and thruster configuration have been solved; however, 

Table A-2. Tridyne system data 

I Parameters 1 Requirement I 
Vacuum thrust, Ibf 

Exponsion area ratio 

Chamber pressure, psia 

Specific impulse, Ibf-s/lbm 

Impulse bit, Ib-s X IO‘ 
Valve excitation time, ms 

Thrust response time, ms 

From signal to 2% chamber pressure 

From signal to 90% chamber pressure 

Nominal pulse width 

Thrust decay times, ms 

Off signal 10% chamber pressure 

Power, W/cluster 

0.01 0.002 
1W:l 
15-30 

143 
2.0 t 0.4 

20 

6 

8 

20 

8 
1.5 

additional experimental work will be necessary to refine 
the heater power requirements in various thermal environ- 
ments. 

111. liquid Systems: Vaporizing liquid 

The vaporizing liquid system is characterized by a 
liquid propellant pressurized by its own equilibrium 
vapor pressure and the expulsion of this vapor through a 
nozzle. While no great improvements over inert gas spe- 
cific impulse can be obtained, considerable savings in tank 
mass result from the propellant’s high density and low 
pressure. Thermal storage heat transfer is the preferred 
method of liquid vaporization, since the addition of heat 
by electrical or radioisotope sources results in an increased 
system mass and complexity. The required duty cycle and 
thrust level may exceed the thermal storage heat transfer 
rate and fix an upper limit on thrust level and impulse bit. 

The mass advantages of the vaporizing liquid systems 
over the inert gas systems are realized at the expense of 
increased complexity. Zero-g feed systems must be capable 
of providing completely vaporized and regulated gas. A 
typical zero-g 3-axis stabilized system is presented in 
Fig. A-6. Since the propellant is selected for its high vapor 
pressure, it acts as its own pressurant. The propellant is 
fed to the vaporizer, which is designed to operate in a 
zero-g environment. The vaporizer is designed to accom- 
modate liquid, gas, or mixed phase flow. Flow into the 
vaporizer and plenum is regulated by a pressure switch 
and control valve. The thruster-valve configuration is 
similar to that of the inert gas system. Again, variations 
on this baseline will exist from system to system. For 
example, the Avco feed system consists of a preplenum 
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Fig. A-6. Typical vaporizing liquid auxiliary 
propulsion system 

and plenum combination, whereas the TRW system has 
a plenum only. 

Propellant selection is more complex for vaporizing 
liquid systems than for inert gas systems. The following 
points must be balanced: 

Liquid vapor pressure must be sufficiently high to 
allow plenum pressure in excess of 10 psia, yet low 
enough to allow light propellant tankage (500 psia 
or less). 

Vapor should have low molecular weight. 

Low heat of vaporization is necessary to minimize 
the requirement for additional heater mass. 

Compatibility of propellant and spacecraft structure 
materials is required. 

High heat capacity of liquid is required to allow 
high thermal storage capability of liquid. 

To date ammonia is the most widely used propellant for 
vaporizing liquid systems. It has a high vapor pressure, 
low vapor molecular weight (high Zap), and high heat 
capacity. It is compatible with most spacecraft materials 
and has a relatively low heat of vaporization. Ammonia 
undergoes a dissociation at 150O0F, and when a cold 
ammonia feed system is coupled with a propellant heater, 
large improvements in system performance can be real- 
ized. Propane, however, has a more favorable heat of 
vaporization, requiring one third the heat to vaporize the 
liquid. In a system seriously constrained by duty cycle 

and thrust level, propane may be an improvement over 
ammonia. System mass and performance, reliability, and 
cost are considered in Appendixes B, C, and D, respec- 
tively. 

Several vaporizing ammonia systems have been de- 
signed, including a variety of systems developed by Avco, 
TRW, GE, and Philco Ford. 

General Electric has developed two vaporizing am- 
monia systems: one was developed under contract to the 
Naval Research Laboratory (NRL). This system (Ref, 12) 
vaporizes the liquid from a flat wick interface (Fig. A-7). 
The wicking action is incorporated for zero-g service. 
Low temperature gradients across the tank wick interface 
result in low heat transfer rates. The other system was de- 
veloped under contract to JPL. This system (Ref. 13) was 
designed in an effort to increase feed system heat transfer 
rates and system efficiency (Fig. A-8). It was later modi- 
fied for an Applications Technology Satellite (ATS) pro- 
posal effort. This feed system employs an orifice to reduce 
feed temperature and pressure. The NRL sponsored feed 
system has been flight-qualified and flown. The JPL spon- 
sored system has not been tested in flight but its system 
capability has been proven. This feed system can provide 
an ammonia flow rate of 5 X lbm/s (70OF). 

The TRW concept (Fig. A-9 and Ref. 14) is similar to 
the GE feed system developed for JPL. The GE orifice and 
coil heat transfer unit is replaced by a capillary tube heat 
exchanger attached to the tank wall. System thrust level 
and duty cycle or required heat transfer rate dictate the 
required number of capillary tubes. This system has also 
not been flight-tested. A flow rate of 1 mlbrn/s for 300 to 
400 s (70OF) has been demonstrated. c 

Philco Ford and NRL jointly developed a system for 
use on the NRL Explorer 30, which was launched in 
November 1965. The spacecraft was spin-stabilized and 
vapor was extracted from the vapor ullage cavity in each 
tank. A more complete system description is presented 
in Table A-3. 

Avco has devoted considerable effort to the vapor- 
izing ammonia system technology. Five zero-g vaporizing 
ammonia systems (Figs. A-10 and A-11) have been flight- 
qualified and flown (Refs. 15 and 16). Four of the five 
systems have been coupled with resistojet thrusters, one 
flew with an empty fuel tank, and the last of the five 
systems flew with cold ammonia (i.e., no resistojet 
thrusters). The inert ammonia system Lincoln Lab. 
Experimental Sutellite (LES 6) was launched in September 
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Fig. A-8. Feed system storage tank with vaporizer 
brazed to exterior surface (photo courtesy of GE) 

~~ ~ 

Parameters 

Propellant 

CAPILLARY TUBE O U T L E T 7  

Requiremonk 

Anhydrous ammonia 

TRANSDUCER 

NORMALLY OPEN/ 
SQUlbVALVE- 

Table A-3. NRL vaporizing ammonia systema 
requirements 

Thrust level, Ibf I 0.020 to 0.070 

I 70 to 90 
Ibf-s 

Specific impulse, - 
Ibm 

Total impulse, Ibf-s - lo00 
Power requirements, W 3 (mox) 

Total system weight, Ibm 1 1s 

aDeveloped by Philco Ford, Newport Beach, Calif.,for NRL. 

1968. It performed its orbital pulse-mode station-keeping 
job satisfactorily. After one year of space storage, the 
system was reactivated and resumed station-keeping ac- 
tivity. The system had 12 lb of propellant and delivered 
a specific impulse of 105 lbf-s/lbm. In addition to these 
six flight systems, another three are under qualification 
for future application. 

The technology of liquid ammonia propulsion systems 
can be considered state of the art. Possible areas of im- 
provement could be in the areas of optimum system 
packaging and zero-g heat transfer. 

Fig. A-9. TRW Systems vaporizing liquid feed system 

n- PLENUM 
PROPELLANT -- u 

Fig. A-10. Avco ammonia feed system 

TO THRUS 
VALVES 

TE R 
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Fig. A-1 1. Three thruster assemblies shown with propellant storage and feed system and system 
electronics (photo courtesy of Avco) 
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IV. liquid System: Monopropellant Hydrazine 

There are three distinct and different concepts of mono- 
propellant hydrazine thrusting systems: expulsion of gases 
from direct thermal decomposition, expulsion of gases 
from direct catalytic decomposition, and plenum storage 
of the decomposition products for later gas expulsion. All 
three utilize an exothermic chemical reaction to aid the 
decomposition of hydrazine. The cause of initial chemical 
decomposition differentiates between the resistojet and 
catalytic systems. Early hydrazine thrusters relied on 
heaters to initiate decomposition and heat the H-7 catalyst. 
Thereafter, the heated H-7 catalyst caused the sponta- 
neous decomposition of the fuel. A reappraisal of this 
technique of hydrazine decomposition is under way. The 
rapid growth of hydrazine as a monopropellant fuel results 
from the development of the Shell 405 catalyst, which 
spontaneously and repeatably initiates the decomposition 
of the fuel (Ref. 17). The Shell 405 catalyst is used in both 
the direct catalytic and plenum systems. The combustion 
products are expelled from the catalyst bed to space in the 
direct catalytic system, while the gases are stored in a 
plenum chamber in the hydrazine plenum system. Hydra- 
zine is attractive as an auxiliary propulsion system pro- 
pellant for the following reasons: 

Combustion gas has low molecular weight (10 to 18). 

Decomposition is exothermic. 

Decomposition temperature is low enough to pro- 
long catalyst and thrust chamber life (adiabatic gas 
temperature of 1100 to 25OOOF). 

Relatively high-density liquid minimizes tankage 
mass. 

Compatible with most spacecraft structure materials. 

Not shock-sensitive. 

Decomposition may be initiated by spontaneous 
catalyst (e.g., Shell 405), or thermal heater. 

The resistojet and direct catalytic systems have identical 
feed systems consisting of a pressurization system, pro- 
pellant tank, expulsion device, start valve, filter, control 
valve, and fill valve. In spinning spacecraft, expulsion 
devices are not necessary. 

Two modes of propellant tank pressurization are com- 
monly used. The first mode utilizes the storage of a high- 
pressure gas in a tank external to the propellant tank. 
Upon demand, the gas is fed from the storage vessel 

through a regulator to the propellant tank. The other 
common method stores all of the pressurant gas (at a pre- 
selected but relatively low storage pressure) in the pro- 
pellant tank. In this mode, commonly referred to as the 
blow-down mode, the propellant tank pressure varies with 
propellant usage. This system eliminates the use of sepa- 
rate pressure tanks and regulators; however, the propel- 
lant pressure is no longer fixed. The selection of ullage 
volume will fix the pressure decay, and thus, the thrust 
decay. For purposes of this report, an ullage volume of 
50% has been selected (volume propellant = volume pres- 
surant). The operating pressure range is, therefore, initial 
pressure to one half initial pressure. The direct catalytic 
system is characterized by either a pressure-regulated or 
‘%low-down” hydrazine feed system and a catalytic (e.g., 
Shell 405) thrust chamber assembly (Fig. A-12). The re- 
sistojet system is similar, with the catalytic thrust cham- 
ber being replaced by a modified resistojet (lower heater 
temperature). Typical direct hydrazine systems are sche- 
matically shown in Fig. A-13. The hydrazine plenum sys- 
tem is different from the direct systems (Fig. A-14). The 
hydrazine flow is regulated into a catalytic bed, where 
the decomposition gases are exhausted into a plenum. 
Hydrazine flow is regulated by the plenum pressure. 
Either capillary tube pressure drop (passive), or pressure 
switch-control valve (active) techniques may be used for 
plenum pressure control. The flight systems may not con- 
tain all the components described in the baseline system. 
Performance and mass, reliability, and cost are covered 
in Appendixes B, C, and D, respectively. 

A large number of hydrazine systems have been flight- 
qualified and flown. Both Hamilton Standard and Rocket 
Research have flight-qualified spectrums of low-thrust 
catalytic engines. TRW, Marquardt, and Aerojet-General 
each have developed several low-thrust catalytic thrusters. 
Rocket Research and TRW have worked on hydrazine 
plenum systems. Avco and TRW are presently developing 
thermal decomposition thrusters. 

Hamilton Standard has developed a numlber of low- 
thrust catalytic thrusters, some of which are shown in 
Fig. A-15. Table A-4 describes some of their typical 
hydrazine/Shell 405 monopropellant flightweight rocket 
engines (Ref. 18). Figure A-16 presents the effect of pulse 
mode operation on performance on a 5-lbf thruster. The 
5-lbf engines have been flight-qualified and successfully 
operated in space onboard the ATS I11 and IV. The de- 
velopment of the Hamilton Standard 0.1 lbf engine was 
initially for a classified project, and no flight data are 
available. 
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Fig. A-1 3. Typical direct hydrazine auxiliary propulsion systems 
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Table A-4. Hamilton standard hydrazine/shell405 thruster data 

Specific 
Valve and 

Ibm 

C h a m b r  Expansion impulse, thruster weight, 
Ibf-s - area mtio, e 

Designation pressure, nhnrst, 

psia Ibf 
Ibm 

0.05 150 sea level 195 0.4 
140 sea level 200 0.49 
160 40 215 0.7 

0.1 REA-IO 

1 .o REA-I7 
2.0 REA-6 150 sea level 217 0.8 
3.3 REA-6 150 30 219 0.85 

110 55 225 0.76 5.0 REA-16 

5.0 REA-16 110 55 225 0.98 

5.0 REA- 18 110 55 225 0.76 
5.0 REA-21 68 50 225 0.98 

S t a b s  

34,573 s and 130,603 pulses 

4,150 s and 2 1 5 , ~  pulses 

- 
Initial Defense Communication 

Satellite Program (IMSPl 

b - 

b REGULATOR 

BLADDER 

PROPELLANT TANK 

FILL VALM 

PRESSURE TRANSDUCER 

START VALVE 0 

PLENUM h 
(a) PRESSURE REGULATED 

SYSTEM 

FILTER 

CONTROL VALM 

GAS GENERATOR 

PRESSURE SWITCH 

FILTER 

VALVE 

8- (b) BLOWDOWN SYSTEM 

Fig. A-1 4. Typical hydrazine plenum auxiliary propulsion systems 
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u 
INCHES INCHES 

Fig. A-15. Typical Hamilton Standard flight weight catalytic hydrazine thrusters; (a) 0.1 Ibf, (b) 1 .O Ibf, (c) IPCSP/A 
and NATOSAT 5 Ibf, (d) lntelsat IV 5.8 Ibf (photos courtesy of Hamilton Standard) 
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Rocket Research has also developed a number of low- 
thrust catalytic thrusters, some of which are shown in 
Fig. A-17. Rocket Research monopropellant hydrazine 
engine performance and mass numbers are presented in 

Table A-5.G The data in Table A-5 are, again, considered 
representative of the Rocket Research technology status. 
The development of the hydrazine propulsion module 
(MR-6A) has led to the delivery of at least 39 engines to a 
classified project. No flight data are available; the con- 
tinued delivery, however, of flight units with little com- 
ment implies successful operation. 

The Marquardt Corporation has developed three low- 
thrust catalytic engines with thrust levels of 0.1, 1, and 
5 lbf, respectively. These engines are shown in Figs. A-18 
and 19. Performance data are listed in Table A-6 (Refs. 19 
and 20). None of these thrusters have flown yet; however, 
the 5-lbf engine has undergone life testing in excess of 
1,000,000 cycles. 

1 10 100 'Oo0 The TRW has developed several low-thrust monopro- 
pellant hydrazine engines. Two of them are the 0.5-lbf 

6Data supplied by B. Schmidt, Rocket Research, Redmond, Wash. 

NUMBER OF PULSES I N  TRAIN, n 

Fig. A-1 6. Average vacuum specific impulse vs 
number of pulses 
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Pf ...... 100psia 

....... 
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Fig. A-1 7. Rocket Research Corp. monopropellant hydrazine engines and 
propulsion systems (photos courtesy of Rocket Research Corp.) 
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and Zntelsut Z Z Z  thrusters shown in Figs. A-20 and A-21. been cycled 1,000,000 times during life testing. The 
The performance of these thrusters is presented in Table Zntelsat Z Z Z  engines have performed well on all the satel- 
A-7 (Refs. 21 and 22). Included in Fig. A-22 is the effect of lites in orbit. East-west station keeping is done by pulsed 
cold bed pulsing on performance. The M-lb engine has mode operation of these engines. 

Specific 
impulse, 

Ibf-s 
Ibm 

Valve and 
thruster weight, 

Ibm 

Expansion 
area ratio, e - 

Table A-5. Rocket Research catalytic hydrazine thruster data 

Status Designation Thrust, 
Ib f  

Thrust; 
Ib f  

0.1 

1 

5 

0.05 

0.1 

Specific 
Expansion area impulse, Valve and 

thruster weight, Status ratio, E Ibf-s Designation pressure, 
- pria Ibm 

R 25 A 100 50 2 20 0.45 

- 100 50 225 0.66 

Ibm 

R l 3 D  100 50 225 1.6 1 ,OOO,ooO cycles 

0.5 

0.5-0.25 

1.5 

3.0 

5.0 

5.0 

5.0 

5.0 

MR-41A 

MR-74 

MR-6A 

MRS-6A 

MR-39A 

MR-40A 

MR-50A 

MR-26A 

MR-34A 

MR-13A 

Chamber 
pressure, 

p r ia  

50 

40 

200 

200- loo 
70 

70 

100 

200 

200 

200 

"50% hydrazine, 50% water mixture. 
bSea level. 

50 I 195 

21 8.4 

228.9 

228.9-227.6 

130" 

130" 

228 

233 

233 

1 75b 

0.498 

0.70 

0.70 

1 .o 
1.24 

0.88 

100,000 cycles; 50,000 I 

After 25,000 pulses no change 
in  pulse shape; 16.5 h SS 

Flight qualified, class flighl 

Delivered to LTV 

Fig. A-1 8. Monopropellant rocket engine (1  /10 Ib thrust) 
on test (photo courtesy of the Marquardt Corp.) 
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Table A-7. TRW catalytic hydrazine thruster data 

Thrust, 
Ibf 

- 
0.5 

4.0-0.8 

Valve and 

Ibm 

Specific 

Stabs Chamber Exponsior impulr ,  thruster weight, 

- area ratio, e Ibf-r Designah'on pressure, 
psia 

Ibm 

Half-pound 100 50 220 1.7 1 ,OOO,OOO cycles 

Inhlraf 275 50 229 0.62 Flight proven on lntelsot 111 
(max) ( m W  



PRESSURE in---T--l CHAMBER TAP 

L I B - 2 0  MESH CATALYST 
VALVE 

Fig. A-20. TRW Systems 0.5-lbf catalytic hydrazine 
thruster (photo courtesy of TRW Systems) 

HEAD END ASSEMBLY 

CHAMBER ASSEMBLY 

1 

HELL 405 CATALYST 

Fig. A-21. TRW Systems lntelsat I l l  catalytic hydrazine thruster (photo courtesy of TRW Systems) 
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220 Aerojet-General has entered the low-thrust hydrazine 
field with a 5-lbf catalytic thruster design (Fig. A-23) 
(Ref. 23). The performance of this thruster is listed in 
Fig. A-24. This engine has undergone 204,000 pulses with 

I 
I 200 
1 

E 180 little pulse degradation or shape change. 
$ 
% - 
*$ 160 Walter Kidde and Co., Inc., an experienced company 

in early hydrogen peroxide monopropellant systems, has 

The performance of this thruster is presented in Table A-8. 
This thruster is a contender for use aboard the Radio 
Astronomy Explorer-B Satellite. 

- 
YI Ln 
A 

/ a low-thrust (5 lbf) catalytic hydrazine thruster (Fig. A-25). 

ELECTRICAL PULSE WIDTH = 80mr 

TIME BETWEEN PULSES = 520 mr 

INITIAL BED TEMPERATURE = 700F 

The hydrazine resistojet (or hybrid) is currently under 
development at Avco (Ref. 24) and TRWe7 In an early 

0 2 4 6 8 12 14 16 investigation of their concept, Avco selected a porous 
ceramic injector configuration presented in Fig. A-26. 
Performance of this thruster is also provided in Fig. A-27. 

80 

PULSE NUMBER 

Fig. A-22. Average specific impulse per pulse as a 
function of pulse number ih4urch, C. K., TRW Systems, private communication, 1970. 

Fig. A-23. Aerojet-General 5-lbf catalytic hydrazine thrusters (photo courtesy of Aerojet-General) 
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THRUST MAC) 5 Ibf 
pc 150 p i a  

A,/% 50: 1 
SPECIFIC IMPULSE 227 I 
CATALYST SHELL 405 
PROPELLANT 
BED LOADING 0.05 lb/in.’-s 

N2H4 

. 
Fig. A-26. Wire coil thruster (porous ceramic injector) 

(upper left) (photo courtesy of Avco) 

4500 
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t 

U 
*-  3000 

2500 
0.250 in. DIA x 2 in. 

2000 

1500 
0 2  4 6 10 12 14 16 

M (N2H4), lbm/s x 
Fig. A-24. Aerojet-General 5-lbf catalytic hydrazine 

thruster (photo courtesy of Aerojet-General Corp.) 
Fig. A-27. Avco thruster performance (unpowered) 

-*I 
I Improvements in performance were noted with the addi- 

tion of % in. of quartz felt to the quartz chamber. 
Table A-9 presents the performance of the 1-in. quartz 
chamber. In a followon contract with NASA-Goddard, 
Avco has investigated this system in greater detail. The 
most recent results suggest a sustained steady state specific 
impulse of 210 lbf-s/lbm with no power addition (17 mlbf) 
and a specific impulse of 193 lbf-s/lbm at a power to thrust 
ratio of 2 W/mlbf (10 mlbf). This thruster has also under- 
gone pulse tests with a 1 second on time at 10,20, and 50% 
duty cycles. 

Fig. A-25. NASA-lewis 5-lb thrust hydrazine engine 
(photo courtesy of Walter Kidde and Co., Inc.) 
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Thrust, 
Ibf 

5 

TRW has completed the preliminary development of a 
hydrazine resistojet thruster for both pulsed and steady 
state operation. In order to obtain short, reproducible 
impulse bits, a concept which utilizes hydrazine vapor 
as the propellant was developed. This concept employs 
a propellant vaporizer upstream of the thruster valve for 
pulsed operation. For steady-state operation, the vaporizer 
cools sufficiently to allow liquid hydrazine operation of 
the thruster. Tests have shown that the transition from 
vapor to liquid hydrazine is both smooth and stable. 
Development activity has been concentrated in the range 
of 0.005-0.015 lbf. A 0.010-lbf thrust hydrazine thruster 
has been demonstrated which provides reproducible im- 
pulse bits for command pulses as short as 0.020 s. The 
pulsed mode specific impulse is 180 lbf-s/lbm; steady- 
state operation results in a delivered specific impulse of 
200 lbf-s/lbm. The total power input for a 0.010-lbf thrust 
system is less than 5 W excluding the valve power. 

’ 

Specific 
Expansion area impulse, Chamber 

pria 
Designation pressure, Ibf-S status ratio, c - 

Ibm 

5-lb 80 50 225 5 h SS 

Hydrazine plenum systems have been developed and 
flight-qualified by Rocket Research and TRW (Refs. 22 
and 25). An early plenumpsublex” system was designed 
at Rocket Research for use on a classified project. This 
system utilized a bed of subliming solid material to cool 
the decomposition products. The system was flight- 
qualified, but information on its performance is not avail- 
able. In a later program, a monopropellant hydrazine 
plenum system was developed and sent to NASA-Goddard. 
A diagram of this test module is shown in Fig. A-28. The 
complete system is shown in Fig. A-29. The pressure con- 
trol is passive. When the plenum pressure drops lower 
than a pre-determined value, the pressure difference 
across the capillary tube upstream of the catalyst bed 
increases, thus allowing hydrazine to flow into the catalyst. 
When the pressure in the catalyst bed increases, flow is 

Thrust, 
mlbf 

3.53 

3.70 

3.85 

again restricted. Although this system was not flown, ex- 
tensive ground tests have proved its capabilities. Plenum 
systems are, however, limited in their steady-state opera- 
tion. During a simulation of an ATS F and G mission 
profile, thermal control problems were encountered. The 
addition of ammonia to the plenum was required to main- 
tain a cool plenum temperature during a long pulse 
duty cycle. 

i 

ipecific 
impulse, 

Ibf-S C* C r  - 
Ibm 

Power, 
W 

Chamber 
A, Ibm/r pressure, 

psia 

1.90 X lo-’ 9.6 0 186 3830 1.56 

1.90 x 1 0 - ~  10.1 12 195 4020 1.56 

1.90 x 10.5 12 202 4180 1.56 

TRW has been working on a high-level and low-level 
thrust system for use on a classified project. The low- 
level thrusters comprise a hydrazine plenum system, with 
individually heated thrusters. A diagram of this system 
is presented in Fig. A-30. A pressure level of 35 +1.5 psia 
is maintained in the plenum with a pressure switch con- 
trol valve loop. Thruster performance is presented in 
Table A-10. This system (Model 35 low-level thrusters) 
is presently under flight qualification. 

0.029 

The field of hydrazine thruster technology has grown 
rapidly in the past few years. Direct catalytic thrusters 
have received a great deal of attention and can be con- 
sidered state of the art. Hydrazine direct thermal (hybrid 
resistojets) thrusters are still in the early stages of devel- 
opment. Increased effort in the area of pulsed mode oper- 
ation of these thrusters is needed. Hydrazine plenum 

114-132 NzH, Shell 405 35 (nominal) 

Table A-10. TRW hydrazine plenum system data 
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Fig. A-28. Schematic of rocket research hydrazine plenum test module 
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Fig. A-29. Rocket Research passive hydrazine plenum 
system (photo courtesy of Rocket Research Corp.) 

PRESSURE 
GAS GENERATOR TRAN S DUC ER 

PRESSURE 
TRANSDUCER- 

Fig. A-30. TRW Systems low-level Model 35 
thruster system (hydrazine plenum) 

systems have received considerable development effort 
and can be considered in the flight-ready state. Thermal 
control of plenum systems seems to be the largest single 
area of system improvement. 

V. liquid Systems: Electrolysis System 

Electrolysis auxiliary propulsion systems produce a low- 
molecular weight, gaseous propellant by the electrolysis 
of a suitable liquid. Water and hydrazine are applicable 
candidates for such a system. The hydrogen-oxygen mix- 
ture produced by this electrolysis of water may be expelled 
at ambient temperature, or ignited and utilized in a hot 
gas mode. Hydrazine electrolysis products are expelled 
at ambient temperatures. 

The storage of a high-density liquid, and the conversion 
of that liquid into a low-molecular weight gas, results in 
low-tankage mass and high-specific impulse. The ignition 
of hydrogen and oxygen leads to an extremely high theo- 
retical specific impulse (375 lbf-s/lbm). For systems with 
large total impulse requirements, large quantity of fuel, 
electrolysis systems can look attractive. Zero-g operation 
of electrolysis cells presents problems. Several types of 
zero-g electrolysis cells are presented in Fig. A-31. The 
separation of hydrogen and oxygen is essential if hot gas 
operation is desired (prevent flashback), Also, the liquid/ 
gas separation is essential. 

GAS GAS GAS GAS 

(a) STATIC VAPOR FEED (b) CAPILLARY WICK 

t LIQUID 
WATER 

GAS AND ELECTROLYTE 
GAS GAS GAS 

L 

ELECTROLYTE AND 
LIQUID WATER 

L J 
ELECTROLYTE 

LIQUID WATER 

(c) C IRCULAT IN G ELECTROLYTE (d) IRRIGUOUS 

Fig. A-31. Water feed system concepts 
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Fig. A-32. Typical water electrolysis thruster system 

Although both hydrazine and water have been proposed 
as propellants for electrolysis systems, water is preferred 
because it results in the generation of hydrogen and oxy- 
gen in separate streams, with possible hot and cold mode 
operation. A typical system is presented in Fig. A-32. 
Again, hydrazine may be substituted for water with sepa- 
rated mixtures of nitrogen and hydrogen resulting. The 
water electrolysis system consists of a triad tank which 
serves to provide passive pressure control. The stream 
of water to the electrolysis cell is regulated by a pressure 
switch-control-valve arrangement. The separate streams 
of hydrogen and oxygen are fed to a bipropellant solenoid 
valve that may be actuated on the oxygen side only (ambi- 
ent oxygen), or simultaneous hydrogen-oxygen actuation 
(2.5:l hot O,/H, mixture). The components for this sys- 
tem are available, but modification of these components 
would be necessary for system integration. Mass, per- 
formance, reliability, and cost of such a system are dis- 
cussed in Appendixes B, c ,  and D, respectively. 

Systems). Early work in this field was initiated at  Hughes 
using water (Ref. A-26). As a result of further studies, work 
with hydrazine was initiated. After chemical testing of 
various electrolytes, oxalic acid was selected. Aluminum 
was selected as cathode material. The zero-g cell was 
designed to generate a mixture of hydrogen and nitrogen. 
The tank and electrolysis cell were an integral unit, see 
Fig. A-33. The generated gas is fed to the central chamber, 
which contains several retention screens (Fig. A-34). These 
screens act to restrict the flow of liquid into the gas phase 
during zero-g operation. This cell was operated in a - 1-g 
environment. The hydrogen and nitrogen gas mixture con- 
tained a large amount of liquid hydrazine vapor (aerosol). 
In later tests of this cell under extremely abnormal oper- 
ating conditions the formation of local hot spots in the 
cell matrix led to the rupture of the tank and destruction 
of the electrolysis cell (Ref. 27). Problems encountered 
with the handling of hydrazine in electrolysis cells have 
led to a reduction in development efforts. 

Electrolysis systems have been studied at  several com- 
panies (e.g., Hughes Aircraft Co., Allis-Chalmers, and Life 

An electrolysis cell was developed for NASA-GSFC 
by HAC to confirm the zero-g operation and vapor gas 
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Fig. A-33. Hughes hydrazine electrolysis system 
(drawing courtesy of Hughes Aircraft Co.) 

Fig. A-34. Zero-gravity gas-liquid separation in the 
Hughes hydrazine electrolysis system (drawing courtesy 
of Hughes Aircraft Co.) 

separation.8 The cell is shown in Figs. A-35 and A-36. 
It was designed as an experiment with no weight limita- 
tion and, consequently, does not look like a fight-weight 
package. This test cell has been re-scheduled for a later 
flight date because of system pressure excursions prior to 
launch. These excursions are thought to be caused by 
hydrazine-electrolite interaction. 

Life Systems, Inc., has approached the design of an 
electrolysis thruster from the life-support electrolysis cell 
field (Ref. 28). This system is centered around a life- 
support electrolysis cell which generates separate streams 
of hydrogen and oxygen gas. A schematic of this cell is 
presented in Fig. A-37. This cell has undergone extensive 
testing, and the problems of water aerosol and migration 
of water vapor have been solved. Propellant generation 
rate is shown in Fig. A-38. An exact system configuration 
has not been studied in detail; however, several methods 
of propellant management have been considered. 

Allis-Chalmers entered the electrolysis propulsion field 
in a manner similar to that employed by Life Systems, Inc. 
(Ref. 29). During the early stages of the Hughes Aircraft 
Company work on electrolysis cells, a survey of existing 
technology (November 1966) concluded that the Allis- 
Chalmers cell was best-suited for spacecraft propulsion. 

EMahaffney, D., Goddard Electrolysis Cell, Hughes Aircraft Co., 
Jan. 1970. 

Fig. A-35. Hughes NASA Goddard hydrazine electrol- 
ysis system (photo courtesy of Hughes Aircraft Co.) 
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Fig. A-36. Hughes hydrazine electrolysis tank/cell 
subassembly 
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Fig. A-37. l ife Systems, OJH, electrolysis cell schematic 
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The Hughes Aircraft Co. desired a hydrazine electrolysis 
cell, while Allis-Chalmers continued with development of 
a zero-g life-support electrolysis cell for the NASA Langley 

PROPELLANT GENERATION RATE, Ib/day 

Fig. A-38. Propellant generation rate vs power, 
l ife Systems electrolysis cell 

Fig. A-39. Allis-Chalmers zero-gravity life support 
electrolysis cell (photo courtesy of Allis-Chalmers) 

JPL TECHNICAL REPORT 32- 1505 

Research Center, The Allis-Chalmers zero-g concept is 
shown in Figs. A-39 and A-40. The performance of this 
cell, which is quite similar to the Life Systems cell, is pre- 
sented in Fig. A-41. In the feasibility study, several candi- 
date designs were investigated; the final selection was the 
passive pressure-control design shown in Fig. A-42. An 
investigation of several bipropellant O,/H, thrusters pro- 
vided several candidates. A bipropellant 20-lbf catalytic 
thruster designed for reaction control operation has been 
studied at the NASA Lewis Research Center (Ref. 29). 
Performance data are presented in Table A-11. Although 
this thruster was designed for operation at 20 lbf, the 
thrust level can realistically be brought down to 5 lbf. An 
integration of these two systems could lead to a functional 
water electrolysis system. 

+ I  I -  

Fig. A-40. Allis-Chalmers electrolysis cell schematic 
diagram (drawing courtesy of Allis-Chalmers) 
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Fig. A-41. Propellant generation rate vs power 
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ELECTROLYSIS 

Fig. A-42. Allis-Chalmers water electrolysis attitude 
control thruster system concept 

A Marquardt O,/H, spark thruster is also available. The 
technology of high-thrust (1000 lbf) 0,/H2 engines has 
been extrapolated to 1 5  lbf thrust. Theoretical calcula- 
tions on a l-lbf thruster operating at a mixture ratio of 
8 to 1 (hydrogen film cooling) reveal a delivered specific 
impulse of approximately 250 lbf-s/lbm. This engine is 
designed to operate at a low (2O0O0F) chamber wall tem- 
perature to prolong thruster life. At a 2500°F chamber 
wall temperature a specific impulse of 310 lbf-s/lbm (5-lbf) 

Thrust (Vac), Ibf 

Chamber pressure, psia 

Ibf-s 
Specific impulse, - 

Ibm 

Propel Ian ts 

Propellant temperature, O F  

Ignition 

Overall thruster mixture ratio, O/F 

Duty cycle 

20 

10,100,290 

390 

Gaseous OdHz 

Ambient to -250 

Pilot bed/catalytic 

1.0 to 3.5 (2.5 mox performonce) 

Steody-state, pulse mode 

can be realized. The thruster is suited for auxiliary pro- 
pulsion due to its pulse mode operation characteristics. 
Breadboard operation of an Allis-Chalmers electrolysis 
cell and a Marquardt 5-lbf O,/H, pilot spark chamber has 
been demonstrated. Further system functional tests should 
be conducted to determine if any system integration prob- 
lems exist (thermal or pressure control). 

Water electrolysis life-support system technology has 
advanced considerably in the last few years. A demon- 
stration integration of life-support systems into a water 
electrolysis attitude control system is recommended. This 
system is presently restricted by thruster technology. Op- 
eration of O,/H, thrusters at mixture ratios of 3 to 1 are 
preferred over mixture ratios of 8 to 1. High temperatures 
are resultant at these high mixture ratios. To compensate 
for these high temperatures, thrust chamber walls must be 
cooled. If hydrogen is used as a film coolant, then a .de- 
crease in specific impulse results. This decrease is quite 
large in small l-lbf thrust engines ( ~ 2 3 0  to 250 lbf-s/lbm). 
If the thruster is operated at the preferred 3 to 1 mixture 
ratio, only 4 lbm per 9 lbm of generated propellant are 
combusted. The remaining 5 lbm of cold oxygen must be 
expelled cold ( I s p  70 lbf-s/lbm). This results in an even 
lower specific impulse. Although this system has been 
demonstrated, improvements in propellant-delivered spe- 
cific impulse are necessary to make this a competitive 
system. In an attempt to improve the specific impulse of 
the propellant, a mixture of hydrazine and water may be 
substituted. The resulting products will contain a larger 
percentage of hydrogen and a smaller percentage of oxy- 
gen. The addition of nitrogen to the mixture will act to 
cool the combustion gases. Further development in the 
area of hydrazine electrolysis technology is required. Ad- 
ditional effort in electrolite selection and gas-liquid phase 
separation is required. 
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VI. Solid Systems: Subliming Solid 

The subliming solid system is charac-xized by a solid 
propellant, which when heated, is pressurized by its own 
vapor pressure and this vapor is expelled through a nozzle. 
While no great improvement in specific impulse can be 
obtained, considerable savings in tank mass result from the 
high-density and low-vapor pressure of the propellant. 
Passive heat transfer is the preferred method of sublima- 
tion of the solid. Early subliming solid thrusters utilized 
high-vapor pressure solids, which could supply the re- 
quired heat of sublimation from spacecraft thermal en- 
ergy. The propellant vapor may be contained by either 
a solenoid control valve, or a “valveless” control valve. 
The valveless concept utilizes propellant condensation in 
the feed lines to act as a valve. A porous plug is inserted 
in the line and the propellant is condensed on this plug 
to restrict the flow. To begin the flow, the plug is heated 
to vaporize the entrained solid material. Thrust level sets 
the required propellant heater power in a valveless sys- 
tem. The mass advantages of this system are noted in the 
low tank pressure. Zero-g propellant problems are nearly 
nonexistent, since the propellant is formed under high 
pressure into its flight configuration, and migration of the 
solid in large pieces is nonexistent. Propellant migration 
due to thermal gradients is an important problem; how- 
ever, proper thermal design and selection of propellant 
can help to eliminate this problem. A typical valveless 
design is presented in Fig. A-43. The propellant tank is 
usually made of light-weight aluminum designed to sur- 
vive buckling and external launch forces. A propellant 
heater is integral with the tank. Thermal shielding is pro- 

HEAT SHIELDING 

PROPELLANT TANK 

PROPELLANT HEATER 

LINE HEATER l- 

d 
Fig. A-43. Typical subliming solid attitude control 

thruster system 

vided to improve propellant heater performance. The 
valveless valve, as previously mentioned, consists of a 
porous plug inserted in a feed line surrounded by a line 
heater. Additional line heaters are provided to compensate 
for propellant migration and additional propellant con- 
densation. Inert gas thrusters are included to complete 
the system. 

Propellant selection is a tradeoff of duty cycle require- 
ments, thrust level, and system design. Some of the im- 
portant points for selection of propellants are as follows: 

(1) Low molecular weight vapor. 

(2) High solid density. 

(3) Low heat of sublimation. 

(4) High equilibrium vapor pressure. 

(5) High thermal heat capacity. 

Several propellants have been used in the past. Ammo- 
nium bisulfide (hydrosul6de) has a very high equilibrium 
vapor pressure at room temperatiires (10 psia at 80’F) 
and a low heat vaporization. This propellant has been 
used by Rocket Research in their valves subliming solid 
system. The high vapor pressure of this propellant liraits 
its use to valved systems, since the continual sublimation 
of propellant would be too great in a valveless system. 

Table A-12. OV 2-1 subliming solid rocket system 

I Data I Parameters I 

I Propellant 
Ibf-s 

Specific impulse, - I Ibm 
lifetime, years 

Environment, O F  

Type 

1 o-z 
Ammonia bisulfide 

75 

1 

70 

Valved 

Fig. A-44. OV2-1 sublex respin rocket system 
(photo courtesy of Rocket Research Corp.) 
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Fig. A-45. Rocket Research NRL "valveless" subliming solid thruster system 
(photo courtesy of Rocket Research Corp.) 
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Subsequent valveless designs utilizing ammonium carba- 
mate, monomethylamine carbamate, and ammonium sulfite 
have been designed by Lockheed and Rocket Research. 
A more complete coverage of subliming solid system de- 
sign aspects is given in Ref. 30. Performance and mass, 
reliability, and cost of subliming solid systems are out- 
lined in Appendixes B, C ,  and D, respectively. 

The first flight system constructed was of the valved 
design. This system, designed for the OV 2-1 satellite 
(Ref. 31), was the culmination of several years of research 
at Rocket Research. The system is presented in Fig. A-44. 
The system was designed to spin up the spacecraft and 
restore any lost spin. Performance data of this system are 
presented in Table A-12. Several problems which occurred 
during the development of this engine led to the addition 
of thermal control heaters. 

Thermal control of the system is important and, prior to 
launch, problems with recondensation of propellant were 
encountered. Ground tests of the engine confirmed its 
performance characteristics; unfortunately, the OV 2-1 
satellite was not ejected into orbit, because of a failure 
of the transtage booster. No flight data are available. 

Rocket Research designed two valveless subliming solid 
systems. One system was designed for the AIMP-E, but 
a decision to use inert gas Freon 14 stopped this program. 
The second system was designed for a NRL satellite 
(Ref. 32) which is shown in Fig. A-45. Its performance 
characteristics are prescribed in Table A-13. This system 
was flight-qualified and flew on a classified spacecraft. 
It functioned well in pre-flight tests. Data on the flight 
performance are not available. 

Lockheed has designed a subliming solid system for 
the ATS program (Ref. 33). This system is shown in 

Table A-13. Rocket Research NRL subliming 
solid-rocket system 

I Parameters I Data I 
Thrust, Ibf 

Propellant 
Ibf-r 

Specific impulse, - 
Ibm 

lifetime, years 

Environment, O F  

Type 

Response time, in min 
O n  

Off  

9 x lo-e 

Ammonia bisulfide 

40 

1 

(0-1 30) 

Valveless 

Fig. A-46. Lockheed ATS "valveless" subliming solid 
thruster system (courtesy of Lockheed Missiles and Space 
CO.) 

Fig. A-46. The cross-section diagram shown in Fig. A-47 
helps to illustrate the system design. The porous plug is 
cooled by a partially silvered reflector. Thermal control 
is ensured by line heaters and heat shielding of com- 
ponents. System design parameters are presented in 
Table A-14. A trace of system dynamic response data 
obtained from pre-flight testing is presented in Fig. A-48. 
This system has flown on several ATS spacecraft; unfortu- 
nately, none of the spacecraft upon which it was installed 
achieved proper orbit. Operation of the system in space 
is confirmed by the flight reproduction of pressure re- 
sponse data simulated in Fig. A-48, but the thrust level 
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Fig. A-47. Cross-sectional view of Lockheed "valveless" subliming solid thruster system 

of the thrusters cannot be determined from spacecraft 
I movement. 

Valveless flight systems can be considered state of art. 
Careful thermal design is necessary to overcome problems 
of propellant migration. Theoretical calculations of per- 
formance differ greatly from actual delivered perform- 
ance at the low-thrust levels. The problem of poor 
performance in the low Reynolds number regime (less 
than 1000) is not well understood, and further research 
in this area is warranted. 

Table A-14. Lockheed valveless subliming 
solid rocket 

Parameters 

Thrust, Ibf 

Propellant 
Ibf-s 

Specific impulse, - 
Ibm 

lifetime, years 

Environment, O F  

Type 

Response time, in min 
O n  

Of f  

Data 

5.4 x 1 0 - ~  

Monomethylamine carbamate 

50 

3 

40-100 

Valveless 

60 

60 

IO I I I I I I 

9 PROPELLANT: METHYL CARBAMATE 

TEST 4004, DEC. 21, 1966 
- 

NOZZLE DIAM: 0.010 i n .  

8 

7 

6 

5 

4 

3 

2 

1 

0 
0 2 4 6 8 10 12 14 16 18 : 
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Fig. A-48. Thrust startup and termination for the "valve- 
less" ATS subliming solid reaction control system 

VII. Solid Systems: "Cap Pistol'l/"HoneycombI' 

Two devices have been proposed to meet an antici- 
pated requirement for a limited number of repetitive 

66 JPL TECHNICAL REPORT 32-1505 



impulse bits. One of these devices is the Curtiss-Wright 
“Cap Pistol,” which is a number of miniature solid- 
propellant rocket motors bonded to a tape (Ref. 34). The 
motors are fed into a thrust chamber and fired as needed. 
This device suffers from low-volume efficiency and me- 
chanical complexity. Residue from the motors contami- 
nates the mechanism. The other device is the Lockheed 
Missile and Space Company (LMSC)/Talley Industries 
“Honeycomb,” which consists of a honeycomb section of 
insulating material filled with solid propellant with each 
cell having its own igniter (Refs. 35 and 36). This device 
suffers from variable location of thrust application. 

Manufacturer 

Impulse/unit propellant, 

Ibf-s 

Rate of fire, unitds 

Size, in?/1000 Ibf-s 

r ,  ms 

Unless some mission demands the use of the “Honey- 
comb,” costs for development and qualification of these 
devices render this concept prohibitive. There may be 
some potential application, however, since the Air Force 
has classified some of the performance data. Table A-15 
lists the known performance data. 

Curtiss-Wright 

0.1; WSR-2’ 

0.1; WSR-4 

(Classified) WSR- 101 

0-40 
200 

1 + 5  

Table A-1 5. Performance data-“cap pistol” and 
“honeycomb“ solid systems 

\ 

I Parameters I Data 

J = 7 mn/cmL 
8-cm ENGINE DURING 
2000-h TEST 

I ‘WSR-2 was to be used on TIROS. 

VIII. Electric System: Ion Thruster 

Two basic engines which are grouped under this classi- 
fication: (1) the electron bombardment ion engine (Kauf- 
man engine) and (2) the contact ion engine. The electron 
bombardment engine uses an anode-cathode arrangement 
to ionize a propellant such as mercury or cesium. The ions 
are accelerated in an electrostatic field and neutralized 
as they are emitted to avoid the limitations of space charge 
flow. Usually, an electromagnet or permanent magnet is 
used in combination with the anode-cathode to improve 
the ionization efficiency. The contact engine uses a heated 

porous tungsten plug to ionize the flow of cesium propel- 
lant vapor through it. I t  is heated electrically, but can 
also be heated with a radioisotope. The ions thus produced 
are then handled in exactly the same way as those in the 
electron bombardment ion engine. 

A major limitation of either of these ion engines is the 
electrode erosion caused by ion bombardment. The ions 
which cause most of the damage are those formed from 
neutral particles which pass through the ionizer, and have 
subsequently undergone charge exchange collision with 
fast positive ions. Therefore, a high-ionization efficiency 
is important in extending electrode life. 

The contact ionization thruster (Ref. 37) has a power-to- 
thrust characteristic as shown in Fig. A-49. As specific 
impulse decreases below 5000 lbf-s/lbm, the required 
power to thrust begins to raise. This is due to the constant 
power loss (radiation at 1200OF) of the ionizer. It is for 
this reason that contact ionization engines operate at 
specific impulses above 5000 lbf-s/lbm. A good feature 
of the cesium contact ionization thruster is its high pro- 
pellant ionization efficiency (99 to 100%). Cesium is stored 
in a reservoir and fed by wick to a vaporizer. Cesium 
vapor is fed to the heated ionizer. 
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Fig. A-49. Power-to-thrust vs specific impulse for 
single-strip ion thrusters 
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The bombardment ionization thruster has slightly dif- 
ferent characteristics. Specific impulses of 3000 to 4000 
lbf-s/lbm are preferred (see Fig. A-50 and Ref. 38). The 
propellant ionization efficiency is less than that of a con- 
tact ionization thruster. If the efficiency of the ioniza- 
tion process is plotted as in Fig. A-51, it is noted that the 
desired ionization efficiency is near the knee of the curves 
(Ref. 39), usually from 85 to 951% efficiency. Propellant 
feed systems for bombardment systems are similar to those 

I 

3 
= 

2 
3 
z 
c VI 

SPECIFIC IMPULSE lsD, lbf-s/lbm 

Fig. A-50. Effect of specific impulse on thruster 
system power 

Manufacturer 

NASA Lewis 

NASA Lewis 

NASA Lewis 

NASA Lewis 

Hughes 

Hughes 

Hughes 

Hughes 

NASA Lewis 

EOS 

EOS 

Thrust, 
plbf 

1000 

650 

650 

520 

700 

560 

300 

10 

350 

24 

10 

of the contact ionization thruster. Two propellants have 
been used: mercury, and cesium. The ionization potential 
for cesium is less than that of mercury; however, the cross 
section for electron-atom interactions for mercury are 
greater than for cesium. The result is that it is about as 
easy to ionize both propellants. Mercury with its larger 
molecular weight will have the advantages of increased 
thrust and decreased tankage weight. 

The electrostatic engines are presently available at 
thrust levels of 10 to 20,000 plbf and specific impulses of 
2700 to 7500 lbf-s/lbm have been realized. Some repre- 
sentative performance data are given in Table A-16 for 
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Fig. A-51. Efficiency of selected cesium plasma 
sources 

Table A-16. Ion thruster performance data 

Power, 
W 

250 

144 

171 

128 

133 

126 

60 
8 

118 

25 

13 

Specific 
impulse, 

Ibt-S 
Ibm 

4000 

3000 

4Ooo 

3300 

5500 

5500 

5000 

5200 

7000 

7300 

6700 

Power/ 
thrust, 

kW/ lbf  

250 

2 20 

260 

250 

190 

225 

200 

8 20 

336 

1050 

1290 

Efficiency 

Overall, 
% 

35 

30 

33 

30 

64 

54 

55 

14 

43 

15 

11 

Propellant, 
% 

70 

50 

66 

30 

W 
-100 

- 1 0 0  

-100 

-W 
-100 
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electrostatic engines (Refs. 37,40, and 41). The bombard- 
ment ionization thrusters are those with low propellant 
efficiency (<98%) and low specific impulse. 

Manufacturer 

Republic Division, 
Fairchild Hiller 

GE 

Ion engine experiments have flown on three early bal- 
listic trajectories. Two were on Blue Scout vehicles (EOS). 
The second flight was successful and data on the EOS 
cesium contact ionization thruster were returned. The 
third early flight was SERT-I. The payload consisted of a 
mercury bombardment thruster and a cesium contact 
thruster (Hughes Aircraft). The mercury bombardment 
thruster was successfully operated for 40 min. An EOS 
cesium Lontact ion thruster was launched onboard 
SNAP-10; operation of its engine was unsuccessful. A later 
cesium contact thruster was flown as an experiment on 
ATS-D, and operated successfully. The SERT-I1 is pres- 
ently flight-qualified and, at the time of this writing, 
awaiting launch. 

Specific 
Power/ impulse, 

- Yr x Ibm Thrust, 
kW/lbf  

plbf W Ibf-r 
Ibm 

Efficiency, Weight, Life, Thrust, Power, 

6 3 300 500 9 -12 2 (flight) 

1-10 2-5 1000/4000 2000/500 10-20 -2 3 (projected) 

IX. Electrical Systems, Pulsed Plasma 

The general mode of operation is for a propellant to be 
ionized by a high-voltage discharge and accelerated by 
the interaction of the discharge current with its own mag- 
netic field. 

Early work in plasma propulsion centered around high- 
power, high-temperature steady-state plasma thrusters. 
Recent work has centered around pulsed plasma thrusters, 
which require lower average power. 

The specific impulse and minimum impulse bit can be 
varied over a wide range by proper choice of discharge 
voltage, discharge energy, and quantity of propellant flow. 
Efficiency is generally low. Four pulsed plasma thrusters 
have flown and operated in space in excess of 3500 h 
aboard LES-6. These thrusters were built by Fairchild 
Hiller. The GE SPET has been demonstrated in flight 
prototype. Some typical performance parameters of pulsed 
plasma thrusters are given in Table A-17 (Ref. 42). 

X. Electrical System: Colloid 

The colloid engine utilizes a very strong electric field 
to charge the droplets in a propellant spray. Although the 
masses of the charged droplets vary, they are generally 
greater than the mass of ions produced in ion engines. 
In some engines, these charged droplets are handled from 
this point just like the ion engines; however, in other 
engines it is possible to produce plus and minus charges 
simultaneously. This negates the need for a neutralizer. 

The colloid engine suffers from the randomness of the 
particle formation and the manner of inducing the charge. 
It alone, of the electrostatic engines, has the most efficient 
formation of charged particles. The colloid engine is 
adaptable to a specific impulse range between the chem- 
ical and the ion engines. 

The TRW system colloid data are presented in Ta- 
ble A-18.9 The colloid system was flight-qualified for the 
DODGE-M satellite. The program was cancelled and the 
thruster system was not tlown. 

SCohen, E., TRW Systems, letter to Comsat Corp., April 1969. 

Table A-1 8. Colloid thruster characteristics* 

Item 

Thrust element 

Packing density 

Thrust density, plb/in.’ 

Basic elements/mlbf 
thrusb 

Vectoring ability, deg 

Continuous testing, h 

Typo I 1968 state of art 

Needle 
Slitb 

Needle 
Slit 

Needle 
Slit 

Needle 
Slit 

Needle 
Slit 

Needle 

2 plb/needle 
25 plb/linear in. 

33 needler/in.’ 
3/in. 

66 
75 

500 
30 

f 15 
? I5 

~ 2400 
120 

‘Propellant 20% No1/80% Glycerol (by weight). 
bProjected. 

1970 proiection 

5 plb/needle 
75 plb/linear in. 

33 necdles/in.’ 
4/in. 

165 
300 

200 
10 

& 15 
& 15 

10,Ooo 
10,Ooo 

Table A-17. Pulsed plasma performance data 
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XI. Thruster Heater: Resistojets tremely large as temperatures are increased above 3000OF. 
As a consequence, most resistojcts are not designed to 
operate above 3 0 0 0 0 ~ .  The resistojet is the simplest of all electrical propulsion 

systems. Cold fluid is increased in temperature by passing 
through an electrical resistance heater. The perfokance 
of inert gas, vaporizing liquid, hydrazine plenum, and 
subliming solid systems can be substantially improved 
by heating the propellant prior to expulsion through the 
nozzle, since the specific impulse of a gas is proportional 
to the square root of temperature. Maximum gas tempera- 
ture is limited by two important factors: power, and 
materials. Each additional degree of temperature added 
to a propellant by a resistojet requires more heater power. 
Power available to resistojets is usually limited. Thermal 
cycling and high-temperature operation of the resistojet 
requires special high-temperature material technology, 
which sets a practical limit on maximum temperature. 

A resistojet should be perceived as a subsystem rather 
than a complete thruster system. The feed system can be 
inert gas, subliming solid, hydrazine plenum, or vapor- 
izing liquid mentioned elsewhere in Appendix A. Pro- 
pellants which are especially attractive are those that 
undergo dissociation (lowering in molecular weight) be- 
low 2000OF. Ammonia, ammonium hydrosulfide, and 
ammonium carbamate are a few propellants that undergo 
a dissociation at 1400 to 1800°F. Also, low molecular 
weight gases are especially attractive. Performance of sev- 
eral candidate working fluids are plotted in Fig. A-52. 
Tradeoffs in power, performance, and heat loss must be 
made. Heat loss and power requirements become ex- 

800 I I € = a  
I a = NH, DECOMPOSITION FRACTION / I I 

TEMPERATURE, O F  

Fig. A-52. Theoretical performance of heated 
propellants 

There are two types of resistojets: fast heat up, and 
thermal storage. The difference between these may be 
expressed in a time constant. If it takes less than 10 min 
to heat up the resistojet to operating temperature, it is 
called a fast heat up resistojet. If much longer times are 
required to heat up the resistojet, then it is called a thermal 
storage resistojet. The advantage of a fast heat up resisto- 
jet is a reduction in average power required; however, 
thermal cycling is greater in this type of system. Perform- 
ance and mass, reliability, and cost are presented in Ap- 
pendixes B, C, and D, respectively. 

Avco has flown four ammonia resistojet systems. The 
thrusters operate on the fast heat-up philosophy. The fluid 
flows through a single-pass rhenium heat exchanger tube 
with an integral nozzle. The heater tube/nozzle is nitro 
brazed to a stainless steel inlet mount. Four platinum leads 
complete electrical continuity to the heater shroud. The 
shroud acts as a combination electrical conductor and 
radiation shield. Alumina insulating rings isolate the 
mounting flange and shroud. The ammonia-fueled ATS I11 
thrusters were placed in orbit in November 1967 as an 
experiment (Ref. 15). The Avco resistojet performed well; 
however, valve problems were encountered. Extensive 
valve qualification tests were conducted to improve valve 
reliability (Ref. 43). The ATS IV system was placed in 
orbit in August 1968. The system performed well for 750 h 
of operation (Ref. 16). The ATS V has been placed in 
orbit, but due to injection and spin error, operation of 
these thrusters has been restricted. Three additional flight 
units are under flight qualification for classified payloads. 
The Avco resistojet has been proven on several flight 
projects, both as experiment and prime attitude-control 
system. Examples of the thrusters and performance data 
are presented in Fig. A-53 and Table A-19. 

TRW has also contributed a great deal to resistojet 
technology. The following information is extracted from 
Ref. 44 with the permission of TRW Systems. 

“The Vela 3 thruster system, utilizing N, gas, provides 
an orbital velocity increment of up to 20 ft/s for each of 
two satellites placed in a near-circular 60,000-mi orbit. 
The thruster configuration is shown in Fig. A-54 and an 
external view in Fig. A-55. The thruster consists of a 
helical resistance heater and a helical propellant flow tube 
brazed onto a metal core and nozzle assembly. The brazed 
assembly is insulated by a jacket of molded Min-K 
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Fig. A-53. Avco ammonia thrusters: (a) assembly, (b) 
millipound prototype, IC) ATS-DIE micropound (photos 
courtesy of Avco) 

Table A-19. ATS 111 Avco ammonia resistojet 
performance data 

Thruster pressure,' psia 

Plenum pressure: pria 

Thruster mass flow,' Ibm/s 

Thruster heater current, A 

Thruster heater voltage, V 
Thruster heater power, W 

Thrust (laboratory), Ibf 

Thrust (flight), Ibf 
Ibf-s 

Specific impulse (lab), - 
Ibm 

Ibf-s 
Specific impulse (flight)/- 

I bm 

0.46 
14.7 

0.31 X 10.' 
- 
- 
- 

28 x 
33 x lo-' 

81 

105 

Orbital test of thruster 2 

Thruster pressure.' psia 

Plenum pressure: psia 

Thruster mass flaw," Ibm/s 

Thruster heater current, A 

Thruster heater voltage, V 
Thruster heater power, W 

Thrust (laboratory), Ibf 

Thrust (flight), Ibf 
Ibf-s 

Specific impulse (lab), - I bm 
Ibf-s 

Specific impulse (flight)," - 
Ibm 

"Calculated 

3.1 2 
15.0 

2.77 x 
- 
- 
- 

255 X IO-' 
238 X lo-' 

90 

86 

hDeterminatian of regulated plenum pressure (Ref. 15). 

0.86 
14.7 

0.29 X IO-' 
7.5 
0.33 
2.5 

41 X 10.' 
38 x lo-' 

135 

132 

4.65 
15.0 

2.64 X IOd 
8.0 
0.45 
3.6 

430 X lo-' 
417 X IO-' 

150 

158 

insulation. The entire assembly is encased in fiberglass. 
Characteristic data are presented in Table A-20. 

"The Vela 3 thrusters were placed into orbit in July 1965, 
and were first successfully operated on September 19, 
1965, when a thruster was fired for approximately 1800 s 
and changed the velocity of the spacecraft by approxi- 
mately 8 ft/s. The thruster on the second spacecraft was 
fired in December 1965, to provide a reverse correction 
of 4 ft/s, and again in March 1966, to provide a correction 
of 4.75 ft/s. Total firing time to date is approximately 1 h. 

"A diagram of the Vela advanced spacecraft thruster is 
shown in Fig. A-56. The thruster is shown in Fig. A-57. 
Characteristic data are given in Table A-21. The heater 
and propellant tubes are supported by plastic standoffs 
which sublime when the thruster is heated, thus improv- 
ing thermal efficiency. This design provides thermal per- 
formance about equal to that of the Vela 3 thruster in a 
more compact package. 
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HEATER ELEMENT GIASS TAPE 

f r CORE 
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k- 5.1 in .  

Fig. A-54. Electrothermal thruster, Vela-3 

Fig. A-55. Electrothermal propulsion V e l a 3  thruster 
(photo courtesy of TRW Systems) 

“The design of the heater and flow tubes for the ad- 
vanced Vela thruster is similar to that of the Vela 3 
thruster, except that three nozzles are employed to allow 
three-axis thrusting. Each nozzle is controlled by a sepa- 
rate valve upstream of the thruster. 

“Two Vela advanced spacecraft were placed in orbit in 
April 1967. Each of the four thrusters has been success- 
fully operated for approximately 13 h to date. 

Table A-20. TRW Systems propulsion data sheet- 
characteristics of electrothermal reaction control thruster, 
model Vela 3 

Parameters 

Thrust, Ibf 
Specific impulse, - Ibf-s 

Ibm 
Propellant 

Power requirement, W 

Duty cycle capability 

Chamber pressure, psi0 

Operating temperature, ‘F 

Thermal operating efficiency, % 
Nozzle expansion ratio 

Thruster weight, Ibm 

Thruster size envelope 

Demonstration service function 

Service total impulse requirement 

Characteristics 

0.042 (single nozzle) 

123 

Nitrogen gas with 2% argon 

92 

Continuous 

15 

lo00  (nominal)-1 200 (max) 

93  

100  

0.65 

See Fig. A 4 4  

Velocity correction, Vela 3 

200 Ibf-s (80 min) 

(vel) 

- 
“The ACSKS (Attitude Control and Station Keeping 

ubsystem) thruster using ammonia as the propellant is 
shown in Fig. A-58. The assembly consists of a metallic 
care around which are wrapped and brazed redundant 
sheathed electrical heating elements and four propellant 
flow tubes. These tubes are sized to provide the heat trans- 
fer area necessary to raise the propellant to 1500OF. The 
flow tubes also provide the catalytic surface necessary 
for decomposition of the ammonia. A nozzle is brazed 
to each of the four propellant flow tubes and the aft end. 
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Fig. A-56. Electrothermal thruster, advanced Vela 

Fig. A-57. Electrothermal thruster, advance4 !la thruster 
(photo courtesy of TRW Systems) 

A combination of refractory foil and ceramic fiber (Refra- 
sil) provides thermal insulation. The entire assembly is 
packaged within a thin metal container or outer shield. 
The core assembly is supported by the propellant flow 
tubes, which are brazed to the outer shield at the inlet 
end. Thermal separation of the core from the outer shield 
is accomplished, when the heater is activated in space, by 
sublimation of plastic support pins. 

“Characteristic data are presented in Table A-22 and 
the thruster is shown in Fig. A-59.’’ 

TRW Systems has developed an electrothermal thruster 
that uses a vortex heat exchanger. A coaxial wire-wound 
heater element is contained within a cylindrical cavity. 

Table A-21. TRW Systems propulsion data sheet-char- 
acteristics of electrothermal reaction control thruster, 
model Advanced Vela 

Parameters 

Thrust, Ibf 
Ibf-s 
Ibm 

Specific impulse, - 

Propellant 

Power requirement, W 

Duly cycle capability 

Chamber pressure, psia 

Operating temperature, “F 

Thermal operating efficiency, % 

Nozzle expansion ratio 

Thruster weight, Ibm 

Thruster size envelope 

Demonstrated service function 

Service total impulse requirement 

Characteristics 
~ ~~ 

0.02 (each of 3 nozzles) 

132 

Nitrogen gas with 2% argon 

(Val) 

30 W (steady state) 
17 W, pulsing, 
10% duty cycle 

Continuous 

30 

1250 (nominal)-1425 (max) 

Greater than 90 

67 

0.30 

See Fig. A-56 

Spin, attitude and velocity 

1250 Ibf-s 

control, advanced Vela 

The propellant is injected tangentially and spirals radially 
inward with high tangential, but low radial velocity. The 
propellant is heated by passing around and through the 
heater element prior to expulsion through a conventional 
nozzle. Very high thermal efficiencies can be achieved 
without the use of thermal insulation because the small 
physical size of the heater limits radiative losses to the 
thruster walls. The tangential propellant injection main- 
tains the wall temperature at a low value. The basic 
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Fig. A-58. Electrothermal thruster ACSKS 

Table A-22. TRW Systems propulsion data sheet- 
characteristics of electrothermal reaction 

control thruster, model ACSKS 

Parorneterr 

Thrust, Ibf 
Ibf-s 

Specific impulse, - 
Ibm 

Propellant 

Power requirements, W 

Duty cycle capability 

Chamber pressure, psia 

Operating temperature, " F  

Nozzle expansion ratio 

Thruster weight, Ibm 

Thruster size envelope 

Demonstrated service 

Characteristics 

0.020 (eoch of 4 nozzles) 

240-260 

Ammonia ("2) vapor 
feed-liquid stored 

14 

0.0200-45s pulse length, 

15 

1550-1 750 

50 

0.5 

See Fig. A-50 

5 moat 1575°F 

2.0% duty cycle 

thruster configuration has been tested with ammonia, 
nitrogen, hydrogen, Freon-14, anhydrous hydrazine, and 
several biowaste propellants. 

The 0.003-lbf thrust unit is shown in Figs. A-60 and 
A-61. The unit is fabricated entirely from refractory ma- 

74 

Fig. A-59. Electrothermal propulsion, ACSKS thruster 
(photo courtesy of TRW Systems) 

terials. At the design point, the thruster produces 224 
lbf-s/lbm specific impulse with ammonia with a power 
input of 28 W. The operating voltage is 26 Vdc; the inlet 
pressure is 20 psia. Performance data on this thruster is 
included in Table A-23. 
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Table A-23. TRW vortex resistojet performance data 

Parameters 

Thrust, Ibf 

Power, W 

Voltage, V 

Flow rate, Ibm/s 

Specific power, W/mlbf 

Curren?, A 

Specific impulse, Ibf-dlbm 

- -  
Characteristics 

0.003 

28.0 

19.7 

1.42 

1.34 x 1 0 ' ~  

9.33 

224.0 

Fig. A-60. TRW vortex thruster (photo courtesy of 
TRW Systems) 

Fig. A-61. Exposed heater element of TRW vortex 
thruster (photo courtesy of TRW Systems) 

A 0.010-lbf thrust resistojet under development at Mar- 
quardt, operates on either ammonia or hydrogen and is 
shown in Figs. A-62 and A-63. The R-100 resistojet con- 
sists of concentric vapor-deposited rhenium tubes that 
are fused into a one-piece series connected structure. 

\ L \ NOZZLE 

RADIATIONJ 
SHIELDS 

Fig. A-62. Evacuated-concentric tubular resistojet 
concept 

Fig. A-63. 1 0-mlbm resistojet thruster (photo courtesy 
of the Marquardt Corp.) 

The nozzle is integral with the innermost tube. The out- 
side tubes are thermally insulated from the central tube 
by a vacuum jacket and radiation shields. A bellows re- 
lieves axial thermal stresses. The entire assembly is insu- 
lated with metallic radiation shields, min-K, and a layer 
of dyna quartz. Life tests of six high-temperature resisto- 
jets have been conducted. Examination of four ammonia 
and two hydrogen resistojets running in a vacuum cham- 
ber for 11 mo revealed no degradation and resulted in 
the speculation that this design could very well run for 
several years. The test cycle used was 30 min on and 
30 min of. Performance data with hydrogen and ammonia 
service are presented in Table A-24 (Ref. 45). 

The GE thruster shown in Figs. A-64 and A-65 consists 
of three components: (1) an insulation package, (2) a 
thruster body, and (3) an electrical heater unit. The insu- 
lation package is comprised of a series of 40 concentric 
nichrome shells (0.003-in. wall thickness) separated by 
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TSOLENOID VALVE 

Thrust level, mlbf 

Power, W 

I r p ,  Ibf-s/lbm 

Mass, g 

Duty cycle 

Gas temperature, O K  

Status 

RESISTANCE ELEMENT 

INSULATION 

Fig. A-64. GE single jet thermal storage resistojet 

10 10 

175 230 

300 500 

264 204 

Continuous Continuous 

2200 2200 

Excess of Excess of 
SO00 h of SO00 h of 
life test life test 

Table A-25. GE resistojet performance data 

I NRL satellite I Laboratory I demonstration 
I Parameters 

Thrust, mlbf 

Propellant 

Power, W 

I,,,, Ibf-dlbm 

Mass, Ibm 

Duty cycle 

Gas temmroture. O R  

20 

Ammonia 

30 

230 

1.75 

< 2 %  

2300 

0.01 

Ammonia 

2 

110 

0.55 

< 2 %  

2300 

nichrome wire (0.014 in. diam). The shells are contained 
by a Hastelloy X outer shell. The heater module is a 
swaged unit consisting of a platinum filament on a mag- 
nesia core contained in a Hastelloy X sheath. The thruster 
body contains a sonic nozzle. Performance data for this 
thruster were extracted from Ref. 46 and are presented in 
Table A-25. Also included in this report is a low-power 

PROPELLANT 
SUPPLY 

ELECTRICAL 
CONNECTOR 

Fig. A-65. GE single jet thermal storage thruster 
(photo courtesy of GE) 

NRL resistojet. These two resistojets were flight-qualified. 
The NRL system was placed in orbit; the classified nature 
however of the satellite restricts release of performance 
data. 

The primary problem areas in the development of 
heated fluid reaction control systems relate to the 
thrusters. Electrothermal thrusters operating at temper- 
atures below 2000OF have been flight-qualified and flown. 
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Long-term demonstration tests of higher-temperature 
(25OO0F) thrusters have indicated that the reliability goals 
applicable to mission durations greater than 2 yr can be 
realized. Reliability of high-temperature (4000OF) and 
high-performance thrusters remains essentially undeter- 
mined and considerable effort is still required before these 
thrusters can be flight-qualified. 

lsotope Prn-147 

Half-life 2.6 yr 

Power density, W/gm 0.361 

Gammodoserad/h-W 1 X lod 
ot 1 m 

a t l m  , 
Neutron dose rad/h-W 

Shielding requirements Minor 

Avoila bility limited, prop 

Future cost, $/W 91 

XII. Thruster Heater: Radioisojet 

The radioisojet is similar to the resistojet; cold fluid 
increases in temperature by passing over a nuclear heater 
source. Performance of the working fluid can be substan- 
tially improved by an increase in expulsion temperature. 
The selection of radioisotope and its configuration will 
define the source temperature. A temperature around 
2000OF is usually chosen to reduce material and heat- 
shielding problems and still maintain a temperature suffi- 
cient to dissociate ammonia and ammonia base propellants. 

This system should be thought of as a subsystem rather 
than a complete thruster system. The feed systems can 
be inert gas, subliming solid, hydrazine plenum, or 
vaporizing liquid systems mentioned in other sections of 
Appendix A. Propellants which are especially attractive 
are those which undergo a dissociation (lowering of 
molecular weight) below 2000OF. Ammonia, ammonium 
hydrosulfide, and ammonium carbamate are a few of the 
propellants which undergo a dissociation at 1400 to 
1800OF. Low molecular weight gases are also especially 
attractive. 

’ 

Po-2 10 Pu-238 

138 days 89 yr 

641.3 0.56 

1.5 X lo-’ 

2.5 X 10.’ 

5.5 X IO4 

8.0 X 10- 

Minor Minor 

Good Good 

10 890 

The selection of the radioisotope is influenced by several 
factors: 

(1) Power density (both weight and volume). 

(2) Availability and cost. 

(3) Half-life. 

(4) Specific activity and shielding requirements. 

Spacecraft integration, launch-handling, and shielding 
requirements tend to eliminate isotopes having significant 
external radiation fields, such as cobalt-60 and strontium-%. 
Isotopes receiving considerable attention for propulsion 
applications include plutonium-238, promethium-147, and 
polonium-210. Characteristics of these isotopes are pre- 
sented in Table A-26. Polonium-210 is the least expensive, 
and presents only minor shielding problems. Unfortu- 
nately, its short half-life eliminates it from long-life 

missions. Both promethium-147 and plutonium-238 have 
been used in radioisojet development programs. 

The AEC requirements for launch safety (launch ex- 
plosions, aborted launches, inadvertent reentry from orbit, 
and ground impact) impose strict capsule design restraints. 
As a result, capsule design represents a critical aspect of 
radioisotope thruster development. In addition, consider- 
able thermal design is necessary to minimize heat loss and 
to optimize the required heat source configuration. Radio- 
isotope thrusters attain maximum performance under low- 
flow conditions. The thermal storage efficiency of the heat 
source and the duty cycle will define the performance 
delivered. 

TRW Systems has done considerable work in radioisojet 
development. The following several paragraphs and dia- 
grams are extracted from Ref. A-34 with the permission of 
TRW Systems. 

“The decomposed ammonia radioisotope thruster 
(DART), shown in Fig. A-66, consists of a plutonium fuel 
form encapsulated in a cylindrical, refractory metal cap- 
sule, around which four propellant flow tubes are coiled. 
Each tube is connected to a separate propulsive nozzle. 
Thermal insulation, in the form of refractory metal 
radiation shields, surrounds the entire assembly. Aero- 
dynamic fins aid in achieving intact reentry into the 
atmosphere by causing the thruster to spin, thereby pro- 
ducing a uniform distribution of the aerodynamic heat 
flux. A coolant limits maximum temperature prior to 
launch so as to prevent oxidation of the insulation. The 
DART is designed to provide thrust either continuously 
or in a pulsed mode of operation. The minimum operating 
temperature in space, dictated by the requirement for 
complete decomposition of the ammonia propellant, is 
1500OF. The maximum temperature is limited to a safe 
level when no propellant is flowing by proper thermal 
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insulation design. Constant thrust over the entire temper- 
ature range is ensured by sizing of the pneumatic com- 
ponents. The thruster was operated at the AEC Mound 
Laboratory during 1967. Technical data are given in 
Table A-27 and the thruster is shown in Fig. A-67. Char- 
acteristic data for a similar thruster operating on hydrogen 
propellant are presented in Table A-28. 

“The POODLE thruster shown in Fig. A-68 was de- 
signed for primary upperstage propulsion. The thruster 
uses polonium-210 fuel to heat gaseous hydrogen. 

“The cylindrical isotope containment capsules were 
fabricated from a tungsten-rhenium alloy. The hydrogen 
propellant flows around a thin helical annulus surrounding 
the capsules and then is expelled through a nozzle. The 
entire assembly is surrounded with a cooling water jacket 
(to remove the heat during ground operations) and high- 
temperature insulation comprised of refractory radiation 
shields. The entire package is then enclosed within a 
finned reentry module. The POODLE concept has been 
demonstrated at subscale power levels at the AEC Mound 
Laboratory. Data for this thruster are given in Table A-29.’’ 

Table A-27. TRW Systems propulsion data sheet-char- 
acteristics of decomposed ammonia radioisotope thruster, 
model Dart 

Parameters 
~ 

Thrust, Ibf 

Ibf-s 
Specific impulse, - 

I bm 

Propellant 

Duty cycle 

Radioisotope compound 

Chamber pressure, psia 

Operating temperature, “F 

Nozzle expansion ratio 

Thruster size envelope 

Thruster weight, Ibm 

Demonstrated service 

Potential applicotions 

0.10-lb NOZZLE THERMAL 

7 RADIATION PROPELLANT FLOW TUBES 
SHIELDS 7 

COOLING TUBE 

0.050-lb NOZZLE 

Characteristics 

0.005-0.10 each nozzle 
(con be multi-nozzle) 

230-280 

Ammonia (“3) 

vapor feed-liquid stored 

Continuous (thrust 0.01 Ibf 
or lower) pulsing (thrust 
0 .014 .10  Ibf) 

Pu-238 

15 

Above 1500 

50 minimum 

See Fig. A-66 

Classified 

Tested at AEC Mound 
lob., January 1967 

Attitude control, station 
keeping, drag makeup 

7 8  

Fig. A-66. Radioisotope thruster, Dart 
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General Electric, along with Monsanto (Mound Labora- 
tories), has developed a radioisojet system utilizing 
promethium-147 as fuel (Ref. 47). The thermal design 
was refined by the use of simulated electrical heaters (this 

Table A-28. TRW Systems propulsion data sheet- 
characteristics of radioisotope heated reaction 

control thruster, model HRT 

method is often used in nuclear technology). The thruster 
has the same basic design as the GE thermal storage 
resistojet, previously discussed in Appendix A. The elec- 
trical heater is replaced by a radioisotope heat source 
(see Fig. A-69). Characteristics of this thruster are pre- 
sented in Table A-30. This thruster has been demonstrated 
at the AEC Mound Laboratory. 

Parameters 

Thrust, Ibf 
Ibf-s 

Specific impulse, - 
Ibm 

Propellant 

Duty cycle 

Radioisotope compound 

Chamber pressure, psia 

Operating temperature, "F 

Nozzle expansion ratio 

Thruster weight, Ibm 

Demonstrated service 

Potential applications 

Characteristics 

0.005-0.10 

485-545 

Hydrogen (Hz) l iquid feed gaseous 

Pulsed, ar continuous below 

feed 

0.0075 Ibf 

Pu-238 

15 

1500-2000 

50 minimum 

4.5 

In development (key components 
same status as model Dart) 

Attitude control, station keeping, 
drag makeup 

Table A-29. TRW Systems propulsion data sheet- 
characteristics of radioisotope heated 

thruster, model POODLE 

Parameters 

Thrust, Ibf 
Ibf-s 

Specific impulse, - 
Ibm 

Propellant 

Duty cycle 

Radioisotope compound 

Operating temperature, " F  

Thruster size envelope 

Thruster weight, Ibm 

Demonstrated service 

Characteristics 

0.25 

710 

Hydrogen 

Continuous 

Po-210 

3600 

See Fig. A-63 

Approximately 45 

Ground demonstrotion with 
subscale fuel loading 

Fig. A-67. Radioisotope heated propulsion decomposed ammonia thruster (photo courtesy of TRW Systems) 
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THERMAL INSULATION FUEL 

4 

Fig. A-68. Radioisotope thruster Poodle 

END 
NOZZLE 

- 

Fig. A-69. Cross-sectional view of TSK 2000-IRE simulated radioisojet thruster 
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Table A-30. GE radioisojet performance data 

Parameters 

Propellant 

Radioisotope fuel 

Thrust fuel, Ibf 

Operating temperature, O F  

Duty cycle 
Ibf-s 

Specific impulse, - 
Ibm 

Power, W 
Mass. Ibm 

Data I 
Ammonia 

Pm-147 

0.02 

1750 

Variable 

Variable; 232 at 1660°F 

60 (thermal) 

5.0 

' JPL TECHNICAL REPORT 32-1505 

Radioisotope-heated thrusters not only have many of 
the materials problems as electrothermal resistojets (re- 
liability for long-duration, high-temperature performance, 
and thermal cycling effects), but these materials must 
satisfy the additional design constraints primarily imposed 
by nuclear safety considerations. Plutonium-238 or 
promethium-147 thrusters operating at temperatures of 
2000 to 2500OF can be expected within the next decade. 
Operating temperatures of the order of 2900OF can be 
expected for polonium-210 heat sources (short mission 
life) within the same period. 

81 



Appendix B 

System Mass and Performance 

1. Introduction 

The assigned system mass is an integral part of subsys- 
tem comparisons. For any given mission, a penalty must 
usually be paid for excess mass. For most missions, a ceil- 
ing is set on overall system mass by the launch vehicle; 
however, in the past, some system design masses have 
been below launch vehicle capabilities (Voyager). Before 
any system mass calculation can be initiated, the required 
mass of propellant must be determined. It is for this reason 
that performance has been considered along with mass in 
this appendix. 

Thruster total impulse requirements can be determined 
from mission requirements. After selection of a thrust 
range, propellant performance can be calculated. The 
mass of propellant is determined by dividing total impulse 

by specific impulse. Propellant feed system mass is a 
function of required propellant mass. Component mass is 
tabulated so combinations of components may be altered 
to correlate with various redundancy concepts. 

II. Performance 

Spacecraft ambient temperature is set at 80°F. Table B-1 
presents performance characteristics of the systems con- 
sidered. Whenever possible, the performance values were 
selected from actual test data. The inert gas-delivered 
specific impulse was assumed from 90 to 92% theoretical. 
This assumption was also used for the hydrazine plenum, 
cold hydrazine and water electrolysis, and vaporizing 
liquids calculations. Resistojet and radioisojet perform- 
ance data were based on a propellant temperature of 
2000°F along with actual flight and test data (Refs. 14,15, 

Table B-1 . Performance characteristics of systems studied 

Systems 

Inert gas (80°F) 

Hi  

He 

Ne 

N2 

A 

Kr 

Xe 

C FI 

CHI 

Tridyne (T = 1300°F) 

Hydrazine direct catalyst 
Steady state 

Cold pulse 

Hot (50th) pulse 

Steady state 

Cold pulse 

Hat (50th) pulse 

Hydrazine resirtojet 
Initial pulse and steady 

Initial pulse and steady 

Initial pulse 

state 

state 

Thrust level, 
Ibf 

0.0001-1 .o 
o.Ooo1-1.0 

o.Ooo1-1.0 

0.Ooo 1-1 .o 
o.Ooo1-1.0 

o.Ooo1-1.0 

0.Ooo 1-1 .o 
o.Ooo1-1 .o 
0.Ooo 1-1 .o 
0.1 

0.05-0. IO 
0.05-0.10 

0.05-0.10 

0.5-5 

0.5-5 

0.5-5 

lo-? 

lo-' 

0.1-5 

I s ,  (vacl, 
I bf-s / I bm 

272 

165 
75 

72 

52 

37 

28 

45 

105 

143 

200 

100 

170 

225 

110 

210 

175 

200 

210 

Irnl,, 

Ibf-s 

lo-" 
1 o-' 
1 o-6 
lo-* 
1 o-B 
1 o-G 
1 o-8 
1 0-B 

1 o-B 
io-' 

5 x lo-' 
5 x lo-' 
5 x 
5 x lo-3 
5 x 
5 x 10.~ 

lo-' 

lo -= 

10.~ 

Systems 

Hydrazine plenum 

Cold (80°F) 

Electrolysis 
Hat Oz/Ht gas 

Hot O?/H? gas 
(Marquardt) 

Cold HzO gas 
(80°F) 

Hydrazine cold 
(80°F) 

Vaporizing liquid 
(80°F) 

NHa 

Freon 

Butane 

Propane 

Resirtojets (20OO0F)- 
Radioisojet (2000°F) 

NHI 

Thrust level, 
I bf 

0.01 0-0.060 

0.05-5 

0.05-5 (2500°F) 

100 x 10-"a 1.0 

100 x lO-"to 1.0 

10 x lO-Oto 

10 x lo-Bto 

10 x 10-Rto 

10 x 10-"to 

50 X lO-'Ibf 

50 X 10-'Ibf 

50 X 10-31bf 

50 X Ibf 

10 x 10-"(3 W) 

10 x lo-3 
100 X 10-'(3 W) 

(10 W/mlbf)  

I,, (vac), 
Ibf-s/ lbm 

100 

350 

310 

109 

116 

97 

52 

84 

89 

130 

160 

230 

f r n i n ,  
Ibf-r 

10 ' 

5 x lo-2 

5 x lo-? 

10 

lo-' 

lo- '  

1 0-' 

lo-' 

lo-' 

1 0-7 

1 0-1 

1 o-' 
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Systems 

NHs (radioisojet) 

Ha (gas) 

Subliming solids 
(80°F) 

Ammonium 
hydrosulfide 

Ammonium 
carbamate 

Monomethyl am- 
monium carbo- 
mate 

Superheated sublim- 
ing solid 
(2000'F) 

Ammonium 
carbamate 

1 02 

6 

4 

2 

able B-1. (contd) 

Thrust level, 
Ibf 

5 to 20 x 
1 0 0  x lo-Bfo 1 

100 x 10-sto 1 

(20 W/mlbf) 

(3.5 W/mlbf) 

1 o-2 

1 o - ~  
lo-' 
1 o'2 

10'' 

lo-* 

1 o - ~  
10.' 

io-2 to 10.' 
(10 W/mlbf) 

I., (vac), 
Ib f -d lbm 

250 

550 

150 

78 

75 

45 

78 

74 

45 

73 

70 

42 

195 

lrnl", 
Ibf-S 

1 0-' 
lo-' 

lo-' 

20 

2.0 

0.2 

20 

2.0 

0.2 

20 

0.2 

0.02 

0.2 

a=  1 - 
100 

100 2 4 6 10' 2 4 6 lo2 
TOTAL EFFICIENCY, % 

Fig. B-1. Ammonia resistojet efficiency as a function 
of specific impulse and power-to-thrust ratio 

16, 45, and 46). Figures B-I-B-3 present the effect of 
power and efficiency on resistojet (NH,, N2, and H2) per- 
formance; also several existing designs are plotted to de- 
fine efficiencies that have been obtained (5-20 mlbf thrust). 
The direct catalytic hydrazine decomposition performance 
data were extracted from many papers (Refs. 14,19,20,48, 
49, and additional datalo). Numbers thought to be repre- 
sentative were selected. Specific impulse during the pulse 
mode is a function of duty cycle and pulse number. Be- 
tween 90 to 954% of steady-state specific impulse will be 
reached after 50 pulses of a 100 ms on and 1 s of duty 
cycle. In a steady-state mode, 90 to 95% theoretical specific 
impulse is achieved after 10 to 20 s of firing. Figures A-16 
and A-22 present a more complete picture of the effect of 
temperature and pulse width on thruster performance. 
Hydrazine/resistojet performance characteristics were 
taken from Ref. 24. Initial pulse specific impulse is high 
due to the absence of heat losses. Figure B-4 presents 
the effect of power and efficiency on hydrazine resistojet 
performance, and two designes are plotted to define effi- 
ciencies that have been obtained. Subliming solid per- 
formance values were calculated from Ref. 30. Delivered 
specific impulse for the Tridyne system were extracted 
from Ref. 11. Electrolysis cell performance for the hot gas 
mode was extracted from present work on hydrogen- 

"JData supplied by B. Schmitz, Rocket Research, Redmond, Wash. 

Fig. B-2. Nitrogen resistojet efficiency as a function 
of specific impulse and power-to-thrust ratio 
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TOTAL EFFICIENCY, % 

Fig. 8-3. Hydrogen resistojet efficiency as a function 
of specific impulse and power-to-thrust ratio 

400 
0 TRW 
A Avco 

(I =AMMONIA DISSOCIATION 
FRACTION 

E 

$ 300 
n L - 
- P 

A Avco I / (I =AMMONIA DISSOCIATION 
FRACTION 

I 

P 

7- 

POWER TO THRUST RATIO P/T, W/mlbf 

Fig. 8-4. Specific impulse of a hydrazine resistojet vs 
power-to-thrust ratio (solid curves represent 100 % total 
efficiency) 

oxygen catalytic thruster design. A hydrogen-oxygen cata- 
lytic thruster under development at NASA-Lewis (Ref. 50) 
will provide a specific impulse of 350 lbf-s/lbm at a 
3.5 to 1 mixture ratio. Pulse mode operation of this thruster 

is quite limited since ignition delay times on the order 
of 1 sec have been observed. Also included is a Marquardt 
spark ignited thruster. The performance presented is for 
an 8 to 1 mixture ratio with hydrogen acting as a film cool- 
ant. This is a predicted delivered specific impulse. 

Satellite parameters such as mass, moment arms, and 
moments of inertia, along with design requirements of 
tipoff rate reduction, spinup, reference acquisition, mo- 
mentum wheel unloading, and limit cycle operation define 
thruster size and duty cycle. Each design operation will 
require a specific duty cycle which will establish the 
delivered specific impulse (Table B-1). Propellant mass 
is then calculated for each operation and the result is 
summed. Although many missions will require only one 
level of thrust, a few may require two thrust levels. Sys- 
tems mass sizing is included in the following sections. 

111. System Sizing 

Spherical tanks were assumed for all systems. Alumi- 
num and titanium were selected as candidate materials. 
Although fracture mechanics is the best method of tank- 
age calculation, the variety of propellants considered in 
this report vastly exceed available fracture mechanics 
data. As a result of insufficient data, the rib stress method 
of tank calculation was used. A safety factor of 2.2 was 
selected for all systems. In addition, two design criteria 
were imposed on the calculations. These two criteria 
required a minimum working thickness of 0.020 in. to 
allow tankage handling and machining along with a maxi- 
mum diameter-to-wall thickness ratio of 850 for aluminum 
and lo00 for titanium to alleviate buckling during a 
vacuum purge. 

Feed and thruster systems are considered separately. 
This is done to aid in redundancy calculations. A mass 
penalty of 0.3 Ibm/W of electrical power is imposed on 
all systems. 

IV. Inert Gas and Tridyne 

The typical system consists of a pressure vessel, start 
and fill valves, lines, filter, regulator, solenoid valve, and 
thruster. The feed system is displayed in Fig. B-5. The 
pressure vessel is set at 3500 psia and will blow down to 
200 psia. This defines a requirement of 5.72 propellant 
residual. If filament-wound epoxy composites are con- 
sidered, considerable reductions in tank mass can be 
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FEED SYSTEM 

COLD GAS THRUSTER 

COMPONENT MASS, Ibm V. Hydrazine Direct Catalyst, Resistojet, and 
Plenum 

The typical system consists of a pressure vessel contain- 
ing a. bladder, pressurized by either a regulated gaseous 
nitrogen supply or a blowdown concept utilizing the pro- 
pellant tank as shown in Fig. B-7. Surface tension reten- 
tion screens have been proposed for replacement of 
bladders (Ref. 51). Slow permeation of bladders by gas 
and propellant presents problems, which do not have 

FILTER 0.35 screens. Retention screens have been used by Lockheed 
in the Agena feed system and are being actively studied 
for general propellant tank applications. Spinning craft 
require no vapor-liquid separation device. Mass estimates 
for hydrazine systems included a small adjustment for 
bladder mass. Errors arising from the addition of this mass 
to a spinning tank or a tank with retention screens can 
be ignored. 

FILL VALVE 

PRESSURE TRANSDUCER 

O e Z 5  

0.25 

START VALVE 0.25 

o.40 REGULATOR 

PRESSURE TRANSDUCER 0.25 

RELIEF VALVE 0.30 

0.20 
2.15 
- MISC. LINES 

COMPONENT MASS, Ibm 

SOLENOID CONTROL VALVE 0.20 

LINES ( 1  PER THRUSTER) 0.20 

THRUSTER (0.01 TO 0.10 Ibf) 0. IO 

THRUSTER (0.20 TO 1 .O lbfl 0.20 

TRIDYNE THRUSTER COMPONENT MASS, Ibm 

k SOLENOID CONTROL VALVE 0.20 

LINES ( I  PER THRUSTER) 0.20 
THRUSTER (0. IO Ibf) 0.20 
[CLUSTER OF 31 
POWER (1.5 W PER CLUSTER 0.45 

IN CLUSTER OF THREE) 

Fig. 8-5. Inert gas system 

achieved. Filament-wound vessels require metallic liners 
because the shell is very permeable to most gases; also, 
water absorption of the liner becomes a problem which 

Titanium was selected as tankage material and ethylene 
propylene rubber as bladder material. The pressurized 
and blowdown feed systems are presented in Fig. B-7. For 
the pressurized system, initial gas pressure was set at 
3500 psia and regulated to 300 psia. A 200 psia pressure 
differential was required for proper pressure regulation, 
thus defining the required pressurant gas. Pressurant tank 
mass was calculated as in the inert gas system. One half 
of the propellant tank was allocated for pressurant gas 
in the blowdown system. Thus, the system operational 
pressure was 300 psia to 150 psia. A filter, start and fill 
valves, a pressure transducer, and lines are downstream 
of the tank. Figure B-8 presents feed system mass as a 
function of propellant mass. Both blowdown and regu- 
lated pressure supply concepts are included. 

Thruster mass values are also provided in Fig. B-7. 
Hydrazine resistojet thruster mass is also included in this 
figure along with the required power penalty. The feed 
system for the hydrazine resistojet thruster is identical to 
that of the direct catalyst. 

can lead totank rupture at high altitude: Titanium was 
selected as the tankage material because of its favorable 
past performance on many programs. Figure B-6 presents 

as a function Of pro- 
pellant mass. The Tridyne system is included since its 
propellant is essentially an inert gas mixture. 

A typical hydrazine plenum system is presented in 
Fig. B-9. Propellant tankage mass for the hydrazine 
plenum system is identical to that of the direct hydrazine 
thrusters; however, additional feed system mass must be 
added for plenums, gas generators, and plenum pressure 
control hardware. Feed system mass is presented in 

feed system 

Fig. B-10 as a function of propellant mass.-Again, both 
blowdown and regulated pressure supply concepts are 
included. Thruster mass values are also provided in 
Fig. B-9. 

Thruster mass numbers are presented in Fig. B-5. Tri- 
dyne thruster mass is also included, and a penalty of 
0.3 lbm/W is imposed on the Tridyne thrusters. 
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FEED SYSTEM 

MASS, Ibrn COMPONENT MASS, Ibrn 

0.25 FILL VALVE 

0.20 PRESSURE TRANSDUCER 

0.35 START VALVE 

T & 0.30 - 0.60 REGULATOR 

FILL VALVE 0.25 

0.20 PRESSURE TRANSDUCER 0.20 

0.25 FILL VALVE 0.25 

0.20 LINES 0.20 
1.20 SUBTOTAL 1.20 

BLOWDOWN 
TOTAL (LESS 

PRESSURIZED 2.40-2.90 TANKS AND 1.45 
SYSTEM PROPELLANT) SYSTEM 

DIRECT CATALYTIC coMPONENT MASS, Ibm THRUSTER 
THRUST 0.05 Ibf 0.5 Ibf 5.0 Ibf 

SOLENOID CONTROL VALVE 0.20 0.31 0.38 

LINES 0.20 0.20 0.20 
s::::: B I..... THRUSTER 0.20 0.34 0.47 

RESISTOJET 
THRUSTER 

SOLENOID CONTROL VALVE 0.20 

LINES 0.20 

THRUSTER 0.20 t POWER PENALTY (1 .5 )  0.45 

COMPONENT MASS, Ibm 

Fig. 8-7. Hydrazine direct (liquid feed) system 
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Fig. 8-8. Hydrazine resistojet and direct catalytic feed system mass 
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FEED SYSTEM 

PRESSURIZED 

COLD GAS 
THRUSTER 

I 

0.25 FILL VALM 

0.20 PRESSURE TRANSDUCER 

0.35 START VALVE 

0.20 FILTER 

0.30 REGULATOR 

FILL VALVE 0.25 

0.20 LINES 
1.50 SUBTOTAL 

0.20 PRESSURE TRANSDUCER 0.20 

0.25 

0.35 

0.20 

0.40 

0.35 

0.25 

0.30 

0.20 

0.20 
2.60 

4.10 

- 

START VALVE 0.35 OaZ5 ""Q 
FILTER 0.20 

r-3 CONTROL VALVE 0.40 

.:.:.? GAS GENERATOR 0.35 $ .:.:.:.: ...... 

PRESSURE SWITCH 0.25 

PLENUM 0.30 

FILTER 0.20 

0.20 
SUBTOTAL 2.60 

- LINES 

TOTAL 2.85 BLOWDOWN 
SYSTEM 

COMPONENT MASS, Ibm 

SOLENOID CONTROL VALVE 0.20 

LINES (1  PER THRUSTER) 0.20 

THRUSTER (0.01-0.10 Ibf) 0.10 

THRUSTER (0.20- 1.0 Ibf) 0.20 

Fig. 8-9. Hydrazine plenum system 
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Fig. B-10. Hydrazine plenum feed system mass 
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FEED SYSTEM COMPONENT 

PRESSURE TRANSDUCER 

FILL VALVE 

START VALVE 

FILTER 

CONTROL VALVE 

VAPORIZER 

PRESSURE SWITCH 

PLENUM 

FILTER 

m LINES 

VI. Vaporizing liquid 

The typical feed system consists of a tank, pressure 
transducer, fill valve, start valve, vaporizer (heat ex- 
changer), pressure control device, and plenum tank. Mass 
values are presented in Fig. B-11. No bladder is required 
since either liquid or vapor may pass into the heat ex- 
changer; however, system design must consider the pos- 
sibility of either vapor or liquid passing through the heat 
exchanger. Since tank pressurization is only from the 
vapor pressure of the liquid propellants, the minimum 
wall thickness influenced the selection of tankage material. 
Aluminum is found to have lowest tankage mass for total 
system propellant mass below 5 lbm. Feed system mass 
as a function of propellant mass is presented in Fig B-12, 

COLD GAS THRUSTER COMPONENT s. n 
SOLENOID CONTROL VALVE 

LINES ( I  PER THRUSTER) 

THRUSTER(O.01 -0.10 I b f )  

THRUSTER (0.20 - 1 .O Ib f )  

Fig. B-11. Vaporizing liquid system 

MASS, Ibm 

0.20 

0.25 

0.35 

0.10 

0.40 

1 .oo 
0.25 

0.30 

0.10 

0.20 
3.05 
- 

MASS, Ibm 

0.20 

0.20 

0.10 

0.20 

where titanium is used for tankage material. Inert gas 
thruster mass is presented in Fig. B-11. 

VII. Resistojet and Radioisojet 

The typical feed systems for the resistojet systems are 
inert gas (N2, He), vaporizing liquid (NH,), or liquid 
hydrogen. Feed system mass can be obtained from the 
previous sections. Liquid hydrogen feed system mass 
is not included here since a liquid hydrogen supply is 
available on large LOX-LH, propulsion systems (e.g., 
SIV-B). Separate LH, tankage for the attitude control 
system would be heavy and would require excessive insu- 
lation. Thruster mass and power penalties are included 
in Fig. B-13. Radioisojets are also included. The exact 
mass of shielding required is a function of AEC and launch 
safety requirements for that specific thruster. If the 
thruster must survive a reentry and crash, a heavy heat 
shield is required. In the low millipound thrust level, how- 
ever, shielding may be minimized to less than 5 lbm. 

VI I I. Electrolysis 

A typical system is outlined in Fig. B-14. The system 
consists of a triad tank containing two bladders with 
hydrogen, oxygen, and water compartments. These com- 
partments act to provide passive pressure control, and 
all three will equilibrate to a common pressure. Down- 
stream of the propellant (water or hydrazine, typically) 
tank the system contains three start valves, three fill valves, 
electrolysis unit, two pressure transducers, two pressure 
control devices (switches), and three filters. Initial tipoff 
rate reduction and orientation maneuvers require that 
some pressurized gas be stored initially onboard the 
spacecraft. This requirement can become the predomi- 
nant contributor to tank mass in small total impulse 
sys tems. 

The propellant is initially pressurized to 300 psia and 
undergoes a blowdown to 150 psia. Gas production is con- 
trolled by control devices like pressure-actuated switches 
in the propellant tank. Strain gauges may be substituted 
for the pressure switches in a passive control system. The 
resistance across the strain gauge devices is a function of 
the rib stress in the propellant tank. Power to the elec- 
trolysis cell can be regulated when these devices are con- 
nected in series with the cell and propellant tank. 

The buckling and minimum thickness criteria suggest 
that aluminum is a more favorable tankage material than 
titanium for a total system propellant mass below 0.03 lbm; 
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I o4 

DESIGNED FOR EQUILIBRIUM VAPOR PRESSURE AT 120°F 

SAFETY FACTOR = 2 .2  

TANKAGE MATERIAL = TITANIUM 

92 

1 0-1 1 oo 1 o1 I o2 I o4 
M A S S  OF PROPELLANT M , Ibm 

P 

Fig. 8-12. Vaporizing liquid and tankage mass 
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FEED SYSTEM 

SEE VAPORIZING LIQUID, OR INERT GAS 

THRUSTER SYSTEMS 

COMPONENT 

SOLENOID CONTROL VALVE 

LINES ( I  PER THRUSTER) 

THRUSTER 

PROPELLANT THRUST LEVEL, POWER, 
Ibf W 

"3 IO x 1 0 4  2 

"3 loo x 1 0 4  10 

N2 10 x 1 0 - ~  35 

H2 IO x ~ ~ - 3  280 

3 X IO3 30 "3 

RADISOJET: 

5-20 "3 

MASS, Ibm 

0.20 

0.20 

MASS. MASS TOTAL 
Ibm +POWER PENALTY, 

I bm 

0.50 1.3 

0.50 3.5 

0.50 9.5 

0.50 11.0 

0.50 84.5 

5.4/CLUST€R 3-4 THRUSTERS 

Fig. B-13. Resistojet and radioisojet systems 

FEED SYSTEM 

1 r 

COMPONENT MASS. Ibm 

START VALVE 0.35 

FILTER 0.20 

ELECTROLYSIS CELL (SEE BELOW) 

+ 
I 

I 
1 

PRESSURE 0.40 
TRANSDUCER (2) 

PRESSURE SWITCH (2) 0.25 

START VALVE (2) 

FILTER (2) 

LINES (2) 

ELECTROLYSIS CELL 

MASS = 4.3 Ibm + 0.7 (X)  Ibm X = NUMBER OF CELLS 

LEWIS 

MASS, Ibm 
HOT H2 O2 THRUSTER COMPONENT CATALYTIC 

LINES (2) 0.40 

SOLENOID 0.40 
CONTROL 
VALVE (2) 

THRUSTER (3-5 Ib f )  1.0 

COLD O2 THRUSTER COMPONENT 

LINE ( 1 )  0.2 

VALVE 0.2 

THRUSTER 0.2 

Fig. 8-14. Electrolysis system 

0.70 

0.40 

0.40 

7.95 
- 

MARQUARDT 
SPARK 

0.40 

0.40 

5.0 
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Fig. 8-15. Electrolysis feed system mass (hydrazine and water) 
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however, titanium is the lightest tankage material for most 
systems under consideration. Feed system mass is plotted 
as a function of propellant mass in Fig. B-15. Since the 
density of water and hydrazine are about equal, hydrazine 
electrolysis cell feed system mass will be approximately 
that of water. The lighter elements present in the hydra- 
zine decomposition products leads to a slightly higher 
specific impulse, resulting in a slight reduction in required 
propellant (watcr clectrolysis in the cold gas mode). 

FEED SYSTEM COMPONENT MASS. Ibm 

F 
PROPELLANT HEATER 0.10 

PRESSURE TRANSDUCER 0.20 

LINE HEATER 0.05 
0.35 
- 

Thruster systcms for water electrolysis may be of two 
types, cold gas or hot O,, €I2. Cold gas mass characteristics 

PROPELLANT HEATER POWER, W MASS PENALTY, 
Ibm 

THRUST, 
I b f  

have been oiitlincd in previous sectiorls. Mass character- 
istics for tlic catalytic hot thrusters designed at  NASA- 10-2 100 30 

Lewis and Marquardt are included in Fig. B-14.  IO-^ IO 3 

lo-‘ 1 0.3 

IX. Subliming Solid 

The typical feed system consists of a propellant tank 
encased in an insulation, propellant lines surrounded by 
heating coils, a propellant heater, and a “valveless” valve. 
The “valveless” valve is a porous plug encased in a heat- 
ing coil. The very low vapor pressure of the propellant 
suggests that aluminum is the best material for tankage. 
A comparison of aluminum density to that of a super insu- 
lation (e.g., min-k) reveals that an insulation mass of about 
75% tankage mass is required for adequate thermal pro- 
tection. Propellant heater power is a function of mass flow 
rate or thrust level. 

Representative subliming solid and superheated sublim- 
ing solid feed systems, along with thruster mass data, are 
presented in Fig. B-16. Feed system mass is presented as 
a function of propellant mass in Fig. B-17. 

SURRHEARD 

1 o-2 

1 o - ~  

40 

4 

0.4 

12 

1.2 

0.12 

THRUSTER COMPONENT MASS, Ibm POWER, W TOTAL MASS, Ibm 
(MASS PLUS PENALTY) DATA: 

I 
“VALVE LESS ” 0.55 5 

VALVE 
0.70 

LINES 0.20 0 0.20 

COLD THRUSTER 0.10 - 0.10 

SUPERHEATED 
THRUST IO-’ 0.50 100 5 . 2  

 IO-^ 0.50 IO 3.7 

0.50 5 2.2 

Fig. 8-16. Subliming solid systems 
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Fig. 8-17. Subliming solid propellant related mass 
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Appendix C 

Reliability 

I 

t 
I : :: 

Reliability is one of the most essential elements in cost 
effectiveness evaluations of competitive system concepts 
or design options. Recommendations based on compari- 
sons of relative reliabilities (qualitative ranking) are use- 
ful in concept comparisons, but are not sufficient for a 
conclusive selection of component designs or subsystem 
redundancy requirements.” 

t 
u.. I ,.I I I I , I  

I 1 I I ,  

t I, 

Reliability magnitude becomes important when systems 
are compared by cost effectiveness techniques. The mag- 
nitude of system mass and cost can be determined with 
reasonable accuracy. This is not the situation with relia- 
bility numbers for propulsion components which do not 
have the extensive statistical failure rate data typical of 
electronic components. Unless quantitative component 
reliabilities can be determined, the tradeoff of mass, cost, 
and reliability becomes erroneous and can, at best, be only 
bracketed. GOVERNMENT 

HANDBOOK 

VENDOR SLRVEY 

USER SURVEY 

1. Reliability Theory 

An essential ingredient in the calculation of mission 
reliability for a component or system is component failure 
rate data. The failure rate of a component may be ex- 
pressed as failures per cycle or failures per unit time. 
Reported failure rates of electrical components have 
proven to be fairly consistent (resistors: one order of mag- 
nitude). Mechanical failure rates vary widely from source 
to source (solenoid values: four orders of magnitude). A 
cbmparison of mechanical and electrical failure rates is 
presented in Figs. C-1 and C-2. The wide variation of 
mechanical component failure rates has lead to a skeptical 
view of mechanical reliability calculations. Electrical com- 
ponents are usually uniform in construction and failure 
mechanism; mechanical components are not. It becomes 
important to consider failure modes and effects of a specific 
mechanical design. The detailed design elements of a 
particular mechanical component will dictate the devices 
failure modes and rates of failure. 

I I  

, I  I I 
. , I ,  . I  

, !  
I :: 

The classical “bathtub” failure rate time curve is pre- 
sented in Fig. C-3. The initial “burn-in” or “debugging” 

“R. F. Miles, Jr., Internal Document, Sept. 15, 1969. 

TRANSISTORS 
(EXCLUDES POWER) 

(EXCLUDES ZENER) 

INTEGRATED CIRCUITS 
(EXCLUDES HYBRID) 

CAPACITORS 
(EXCLUDES TANTALUM) 

RESISTORS 
(EXCLUDES 
WIRE WOU ND) 

CONNECTIONS 

DIODES 

I 
RECOMMENDED FOR 1 
. RELIABILITY 

I 1  PREDICTIONS 

t 
I 1 I I I ,  

Fig. C-1. Operating failure rates for screened 
electronic parts 

I I I I I 

I o2 I o3 I o4 I o5 1 o6 
FAILURES PER lo9 CYCLES 

Fig. C-2. Solenoid valve failure rate data 

I 
BURN-IN I NORMAL OPERATING 

PERIOD I PERIOD 

TIME OR CYCLES + 

Fig. C-3. Classical “bathtub” failure rate curve 

I \ I 
I \ I J/ 

I 
I 

I I &-- LIFE EXPECTANCY 

period can be effectively eliminated by extensive system 
testing. Many times during the course of development of a 
system, the cost of testing prohibits extensive qualifica- 
tion. The result is a system with “bugs” which can lead 
to premature failure of the system. The large number of 
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system design criteria requires that two or three con- 
straints be imposed on a system test simultaneously. This 
can act to mask failures and lead to erroneous corrcctive 
measures. The wearout portion of the “bathtub” curve can 
also be defined by extensive testing; in the case of long- 
life (for example 5 yr) components, however, life testing 
also becomes expensive and constrained by schedules. 

The proposed Grand Tour Mission will have a nominal 
10-yr life and must be launched by October 1978. Con- 
ventional life testing of components for this mission 
becomes impossible since mission life exceeds the total 
time remaining prior to launch. Two methods of ac- 
celerated life testing have been proposed: overstress, 
and controlled testing. Overstressing a component may 
lead to accelerated failure. This method is applicable to 
failure mechanisms of the chemical or nuclear type, where 
increased concentration, temperature, voltage or particle 
flux will act to accelerate reactions. Care must be taken 
to avoid side effects. An increased temperature may accel- 
erate additional failure modes. A second type of testing, 
called controlled testing, relies on extremely fine miasure- 
ments. A part is placed in its normal operating environ- 
ment and periodic measurements are made. If the failure 
mode is assumed to be O-ring shrinkage, then the size of 
the O-ring is measured to extremely fine accuracy during 
a short test period. This rate is then extrapolated to in- 
creased time,. A problem may occur when a part under- 
goes a dual mode of failure. The O-ring in question may 
expand for 6 mo and contract for the remaining 10 yr. 
A short duration test of 6 mo would therefore reveal incor- 
rect information. Both methods suffer from problems, and 
both rely on an accurate description of the failure mecha- 
nism. Controlled testing and accelerated testing along 
with the accumulation of failure rate data based on such 
testing is of value and should be encouraged. It is hoped 
that during the engincering development phase of system 
design that initial “burn-in” has occurred and the wear- 
out time has been identified. Components can then be 
dcsigned to operate in the constant failure rate portion 
of the failure/time cur\re. 

The “largest flaw” concept will result in a constant or 
generic failure rate. Other theories have been proposed 
to account for a failure rate time increase. These theories 
take the form of failure rate time distributions which 
incorporate the constant and wear out portion of the fail- 
ure rate curve. Some of these distributions are Weibull, 
Log-Normal, Gamma, Gompertz-Markseham, and others. 

In mathematical terms, the probability distribution of 
time to failure of a part with constant failure rate is given 

by p ( t )  = Aexp -- At ,  where the failure rate A may be 
statistically estimated by experiment. Reliability is usually 
given by R =- exp - A t .  In practice, some parts appear 
to fail exponentially with time, while others are assigned 
a fixed reliability (pyro valves). If components are assumed 
to fail exponentially with time, long duration missions 
result in extremely low values of calculated reliability. 
It appears reasonable that parts which cycle extensively 
will fail with greater probability with time (cycles), while 
parts which do not cycle extensively (pyro valves, only 
one cycle) will have a constant probability of failure with 
time. For purposes of this study, noncyclic component 
reliabilities were calculated based on a constant failure 
rate and exponential failure over a 1-yr life. 

The time or cyclic dependence of reliability is impor- 
tant when moving components are considered. Failure 
rates for moving or cyclic components are often expressed 
as failures per cycle. Each actuation of a valve may be 
followed by a cycling of regulators, catalyst beds, elec- 
trolysis cells, thrust chambers, pressure switches, spark 
generators, and other active components. If faihire rates 
are expressed as failures per cycle, then the duty cycle 
(number of total cycles) of the system will determine the 
active mission reliability of these components. 

Environmental factors are applied to failure rates to 
account for actual observed stress levels. For purposes of 
this study, system reliability comparisons have ignored 
the launch stress environment since the auxiliary propul- 
sion system is dormant during this period. Ground failure 
rates are usually projected to space dormancy periods 

~ 

ACTIVE RELIABILITY OF 
“PASSIVE COMPONENTS” 

I 
PASSIVE RELIABILITY OF 

“ACTIVE COMPONENTS” 

x _--- 

I I I 

SOLENOID LINES FILL PYRO 
MANIFOLDS VALVES 

COMPONENTS 

Fig. C-4. Skewed line dormancy correction for cyclic 
mechanical components 
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with an environmental factor (1/10 to 1/1OOO). This, how- 
ever, does not seem like a satisfactory method to apply 
across the board. For example, tanks have similar failure 
modes and failure rates whether the thruster is being fired 
or not, while a solenoid valve has different failure mecha- 
nisms in the dormant and active states. The predominant 
failure mechanism of a valve in the dormant state is deteri- 
oration by chemical and nuclear action. Failure mecha- 
nisms of lines and manifolds (“passive components”) in an 
active state are similar to failure mechanisms of solenoids 
and regulators (“cyclic components”) in the dormant state. 
Rather than use a constant correction factor ( K E )  for all 
components, a “skewed line” approximation seems to be 
a more appropriate dormancy correction for cyclic com- 
ponents (see Fig. C-4). 

II. Component Reliabilities 

In order to get a qualitative component reliability rank- 
ing, an averaging technique was employed. Previous reli- 
ability studies were reviewed and component reliability 
and failure rate values were extracted (Refs. 5 2 5 8  and 
three internal communications12). Data points which 
varied greatly from the average were explored. Those 
which were based on bad initial data or on a limited data 
sample were removed. Components were listed in order 
of reliability (or failure rate) magnitude. Each list was 
numbered and normalized by the total number of com- 
ponents. Then, these lists were averaged and a new list 
was obtained. This was done primarily to set the relative 
ranking of components. Biases were generally removed, 
or smoothed out, by this technique; some components 
were given a relative ranking by value judgments when 
no data were available for that specific component. The 
design of a mechanical component as discussed before 
had direct bearing on its reliability. One company may 
rate a fill valve high and another company may rate it low, 
due to differences in their fill valve design. An effort has 
been made to obtain data on similar components (size, 
usage, and design). The resulting list of components is 
expressed in descending order on the bottom of Fig. C-5. 

Quantitative ranking of the components becomes diffi- 
cult. Since there were differences in qualitative component 
ranking, vast differences exist in component reliability 
magnitudes. As was mentioned earlier, reliabilities for 

12Young, Don to Lance, T., Interoffice Memorandum, Dee. 13,1965; 
Groudle, Tom, JPL internal document, 1969; and Jennings, C. N. 
to Baughman, L. E., Interoffice Memorandum, Sept. 5, 1969. 

noncyclic components were based on a 1-yr mission dur- 
ation. Items 6 through 14 in Fig. C-5 are noncyclic com- 
ponents. The data points for these non-cyclic components 
were taken from several references (Refs. 5256) and the 
three communications just listed. The solid line through 
these data points was used to approximate the reliability 
values of the non-cyclic components. No correction factor 
is applied to these data for a passive environment. 

The four profiles above the cyclic components in 
Fig. C-5 represent four duty cycles (1,0oO, 5,000, 10,000 
and 100,000 cycles). Cyclic failure rate data were used 
to set the end points of these curves. Two representative 
component failure rates were selected from previously 
tested auxiliary-propulsion components. I t  must be 
stressed that if a reliability value is to be accepted for a 
component, failure rates used must be extracted from 
similar mechanical designs. Auxiliary-propulsion solenoid 
failure rates may not correlate well with midcourse pro- 
pulsion solenoid failure rates. The failure rate for solenoid 
valves was based on life testing of seven valves. There 
were three Carlton, one Sterer, and three Kidde ~a1ves.l~ 
These valves may be pessimistic in view of the Avco, and 
NRL Wright valve life tests, but they were considered 
representative. This results in an average failure rate of 
1.3 failures per million cycles with a 90% confidence level 
using a Poisson frequency distribution. The failure rate 
for catalytic thrusters was based on life testing of seven 
thrusters (Refs. 59-61). These seven thrusters accumulated 
nearly 2,450,000 cycles with no apparent catalyst failure. 
This failure rate corresponds to approximately 0.57 fail- 
ures per million cycles, with a 90% confidence level. 

The “skewed line” concept is applied to compute dor- 
mant failure rates of cyclic components. The mode of 
dormant failure of cyclic components (valves) is similar 
to the failure mode of passive components (propellant 
line or manifold) in the active mode. The skewed line 
will not become parallel, that is, dormant valve reliability 
will always be less than a sealed-off manifold connection. 
The actual slope of this line may be questionable, but 
the concept of cyclic component dormant failure rate ap- 
proaching that of lines and manifolds seems reasonable. 
Cyclic components must undergo both dormant and active 
modes of failure. 

The failure rates presented in all the above discussion 
and referenced figures were adjusted to account for only 

IaFerraera, John, JPL internal document, 1969. 
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Table C-1. Component reliability data 

Component 

Bi-prop solenoid 

Solenoid valve 

Regulator 
bi-prop thrust chamber 

Electrolysis cell 
pressure valve 
relief volve 
subliming solid "valve" 

Spark generator 
catalysis thrust 

chamber 
direct thermal 

thrust chamber 

Liner and manifolds 

Fill valve (copped) 
Tridyne resistojet 

Pyro 

Bladders 
radioisojet source 

Pressure transducer 

Line heaters (low T) 

Inert gas (pressurized) 
plenum tanks 

Propello n t ton k 
inert gas thrust 
chomber 

Filter 

Cyclic mode 

those modes that lead to system failure. That is, the 
failure of a pressure transducer to measure pressure ac- 
curately will not necessarily affect the mission success. 
Only those transducer failure modes (leaks) which lead to 
mission failure were counted. If observed component fail- 
ures which lead to system failure are only 10% of part 
failure modes, then the overall failure rate must be cor- 
rected to include only 10% of the total failure rate. 

Table C-1 presents a tabulated record of reliabilities 
selected for auxiliary-propulsion system components. 

111. Redundancy Concepts 

Application of redundancy is the most direct method 
of increasing system reliability. Component reliabilities 
are usually fixed by present design technology; however, 
new basic design concepts may improve component 

1,000 

0.9903 

0.9987 

0.999 

0.9992 

0.9994 

Cycles 

5.000 

0.9915 

0.9935 

0.996 

0.996 

0.990 1 

10,000 

0.983 

0.9871 

0.990 

0.9925 

0.9942 

100,000 
~ 

0.830 

0.871 

0.900 

0.925 

0.94.2 

Passive mode 

0.9934 

0.9950 

0.9963 

0.997 

0.998 

0.9905 

0.9991 

0.9995 

0.99968 

0.9990 

0.99905 

0.99900 

0.9999 

0.9999 

reliability substantially. The weakest link in auxiliary- 
propulsion systems is the solenoid valve. Four commonly 
used valve redundancy configurations are: dual series, 
dual parallel, quad, and quad connected (see Fig. C-6). 
The selection of a valve configuration is dependent on the 
predominant valve failure mode. Most valves tend to favor 
the fail open mode. A value of 75% failures in the open 
mode has been selected for purposes of this study. The 
seven valves used to determine failure rate experienced 
four failures: one closed, and three open. The dual series 
is favored over dual parallel, and the quad is favored over 
the quad connected when the fail open mode is pre- 
dominant. Valve redundancy equations are presented in 
Fig. C-7. Regulators are the second least reliable com- 
ponent in the considered systems. Parallel regulators with 
squib (pyro) isolation valves is one method of improving 
reliability. The predominant failure mode of regulators is 
the fail open position (e.g., 90% fail open). The parallel 
regulator concept and math model are presented in 
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DUAL SERIES 

0 DUAL PARALLEL 

QUAD 0 
QUAD CONNECTED m 

Fig. C-6. Most-used valve redundancy configurations 

Fig. C-8. A more complete redundancy study is included 
in an internal communication by R. R. B o ~ m a n ' ~ .  

System equations are presented on a summary page 
(Table C-2). The six thrust chamber single system has no 
preference to valve failure mode. Both an open and a 
closed failure will lead to system failure. The total valve- 
thruster reliability is raised to the sixth power. In the 
twelve thruster single system, the valve system failure 
mode becomes important. If the failure of a valve system 
is in the open position, the system fails; but, if a valve 
system fails closed, a second thruster-valve unit will still 
be available. Since the probability of a thruster to fail 
open (not restrict flow) is nearly one, only the closed 
failure mode incorporates thruster reliability. The double 
system concept is portrayed in Fig. C-9. In order to pro- 
tect against the open failure, three times the required 
fuel is necessary. Should the plus roll jet (1) fail open, 
the two minus roll jets (2 and 8) would counter with equal 
thrust to balance the leaking jet. Thus, the plus jet (1) 
would use twice the fuel of the minus jet (2) from system 
A. If the open failure occurred at launch, two-thirds of 
system A fuel would leak out the plus jet and one third 
out each of the two minus jets, leaving two-thirds of the 

'1Bowman, R. R., Interoffice Memorandum, July 1969. 

R = PROBABILITY OF N O  
svo OPEN FAlLljRE 

R =PROBABILITY OF NO 
svc CLOSED FAILURE 

SINGLE VALVE 

pvs = %so + pvsc 

DUAL SERIES 

P = P 2  
vsO svO 

pvsc = ' - (I -psvcJ2 

= PROBABILITY OF OPEN 
" 0  FAILURE 

vC svc FAILURE 

VS =VALVE SYSTEM COMBINATION 

P = 1 - R = PROBABILITY OF CLOSED 

&I- 
RVS 

RVSo + RVSc - 1  = R + R - 1  svo svc 

= I - P v s  = R2 - i ' - R S v o ) 2  
RVS svC 

DUAL PARALLEL 

Pvs = P i v c  + 1 -  ( I - P s v 0 J Z  

QUAD 

pvs = %so + p v s c  c c 

QUAD CONNECTED 

Pvs = P + P vso vsc 

Pvsc = 1 -  (l-P:vc)2 

pvso = [ I -  (l-psvo)2] 

Fig. C-7. Valve redundancy equations 
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Table C-2. System calculations summary SYSTEM A SYSTEM B 

Single tyrtmr: 

A. Six thrusters (six required for operotion): 

R s y s t e m  = RER&R;IX 

RE: feed system reliability 

RVS: solenoid valve system reliability [single, dual series, 
quad) for all systems; electrolysis cells, this is  a 
bipropellant valve system. 

RTH: thruster reliability, inert gas, spark generotor, 
resistojet.. . 

B. N-thrusters (N-required for operation): 

R, = RERTsR:H 

RF: reliability of feed system 

R r s :  reliability of valve system 

RTH: thruster reliability, systems may be used as 
auxiliary propulsion systems for spin up (N = 2), 
gravity gradient inverter ( N  = 2). or station keeping 
on a 3-oxis stabilized craft ( N  4). 

C. Single system with 12 thrusters (six required for operation): 

Rsystem EZ RF [ G s 0  - (1 - R v s , R ~ ~ ) * l ~  

R r :  reliability of feed system 

Rrs,:  reliability of valve system open 

Rvs,: reliability of valve system closed 

RTH: reliability of thruster 

Double systems: 

A. Three times required propellant active systems: 
RsYstem = i - ( 1  - R S S ~  

PpRSo = (I-RR0)’ = P2 
RO 

WHERE THE START VALVE RELIABILITY IS ADDED TO CORRECT FOR 
SENSING AND SWITCHING. 

SINCE P >> P 
Ro Rc 

Fig. C-8. Parallel regulator concept and 
mathematical model 

(+) (-) (+) (-) (+) (-) (+) (-) (+) (-) (+) (-) 
ROLL YAW PITCH ROLL YAW PITCH 

Fig. C-9. Double system 

initial fuel in tank B. The amount of fuel loaded (tanks 
A and B) is therefore three times the required fuel. The 
redundancy equation for double systems is included in 
Table C-2. 

The concepts of standby redundancy, system isolation 
by latching valves, and other more sophisticated redun- 
dancy concepts have not been included in this appendix. 
These are important concepts and should be included in 
future work. 

IV. System Calculations 

The system calculations have been broken into three 
segments: feed systems, valve-thruster configurations, and 
system integration. For rapid selection of system relia- 
bilities, a table of total system reliability is included at the 
end of this appendix. This table is an incorporation of the 
feed and valve-thruster reliabilities. If different initial 
reliabilities are preferred to those presented in this appen- 
dix, then the modeling equations presented can be used to 
calculate new system reliabilities. 

The basic feed system reliabilities are presented in 
Figs. C-10 through C-15. Baseline systems consist of the 
diagrammed components. The cyclic dependence of these 
systems is assumed to correspond to the thruster duty 
cycle. To improve the reliability of regulators, dual par- 
allel squib isolated regulators have been included in the 
modified feed systems. Four thruster-valve configurations 
have been considered. Since the predominant failure mode 
for solenoid valves is open, the two preferred redundant 
valve configuration are dual series and quad. The single 
valve configuration has also been included. Single thruster- 
valve configurations with twelve active and no standby 
redundant thrusters present several interesting ramifica- 
tions. Twelve thrusters with single valves have a very 
low reliability, since only one of the twelve valves in the 
open position leads to a failure (RFso). The reliability of 
the twelve T/C dual series valve single system is high. 
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FEED SYSTEM COMPONENT 

TANK ( R T )  

FILL VALVE( RN) 

PRESSURE TRANSDUCER (RpT,D) 

START VALVE(RS) 

FILTER ( RF)  

REGULATOR( R R )  

PRESSURE TRANSDUCER( RpTID) 

RELIEF VALVE( R ~ ~ )  

MISC L I N E S ( R ~ )  

BASELINE WITH 
RF = RT RFV R2F'T,D RR % RL 

BASELINE SYSTEM PARALLEL REGULATOR 

- 0.9887 
R F l , m  c y c  

0.9834 

0.894 
RF1OO,OOO c y c  

Fig. C-10. Inert gas system 

0.9871 

0.9765 

FEED SYSTEM COMPONENT 

TANK ( RT) 

FILL VALVE( RN) 

PRESSURE TRANSDUCER( RpTlD) 

START VALVE (Rs) 

FILTER ( RF) 

REGULATOR LINES (RRRL) 

TANK A N D  BLADDER(RpTRB) 

FILL VALVE (RN) 

PRESSURE TRANSDUCER( RpTD) 

FILL VALVE(Rw) 

START VALVE ( Rs) 

FILTER( RF) 

LINES(RL) 

RFpR = RT R& R&/D R: RR R: RB 

RFBD = R  PT R R 2  B FV RPT/D RS RF RL 

RPT 

BASELINE SYSTEM 

0.9885 
RFPR 1000 cyc  

RFPR 10,000 cyc  

0.9796 

0.9954 
R ~ B D  io00 cyc 

R ~ B D  io,ooo cyc  
0.9954 

BASELINE WITH 
PARALLEL REGULATOR 

0.9833 

Fig. C-1 1. Hydrazine direct systems 
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FEED SYSTEM C O M P O N E N l  

TANK ( R ~ )  

FILL VALVE ( RFV) 

PRESSURE TRANSDUCER (RpTID) 

START VALVE (Rs)  

FILTER ( RF)  

REGULATOR LINES 

I R ~ R ~ )  

9 FILL VALVE ( R F  

TANK A N D  BLADDER 

c R p r R ~ )  

( R ~ ~ / ~ )  
PRESSURE TRANSDUCER 

N) FILL VALVE( R 

S) START VALVE (R 

FILTER [RF) 

CONTROL VALVE(RCV) 

GAS GENERATOR( RG) 

PRESSURE SWITCH(RpSN) 

PLENUM(Rp) 

FILTER ( RF) 

LINES (RL) r i  

RFBD RPT R B  R& R&’D RS R: ‘L RCV RG RP RPS/W 
BAS ELI NE WITH 

BASELINE SYSTEM PARALLEL REGULATOR 

R 0.9757 - 
FPR 1000 c y c  

RFPR 10,000 c y c  

RFBD 1000 c y c  

RFBD 10,000 c y c  

0.9443 0.9478 

0.9835 - 

0.9606 - 

Fig. C-12. Hydrazine plenum system 

COMPONENT 7Y 
i )  

PRESSURE TRANSDUCER(RpT,D) 

FILL VALVE (RN) 

START VALVE(RS) 

9 FILTER(RF) 

CONTROL VALVE( RW) 

VAPORIZER( RV) 

PRESSURE SWITCH ( RKD) 

PLENUM(Rp) 

FILTER(PF) 

LINES ( RL)  

2 
R~ = R~~ R ~ ~ / ~  R~~ R~ RF R~~ R~ R~ Rps/ly R~ 

BASELINE SYSTEM 

0.9863 

0.5’683 
RF1O,GQa cyc 

Fig. C-13. Vaporizing liquid system 
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COMPONENT 
Table C-3. Valve-thruster reliability 

I 
E 

I t-a 
el-@- P 

TANK BLADDERS (2) 
( R e )  

PRESSURE TRANSDUCER 

( R ~ ~ / ~ )  
FILL VALVE (31(RN) 

START VALVE ( R s )  

FILTER ( R F )  

ELECTROLYSIS CELL 

(REC) 

( R ~ ~ / ~ )  

To (3'(RPSrn) 

PRESSURE TRANS- 
DUCER (21 

PRESSURE SWITCH ( I )  

START VALVE (2)( Rs) 

FILTER (2) (RF)  

LINES (2) (RL) 

BASELINE SYSTEM 

0.9852 

0.9720 

Fig. C-14. Electrolysis system 

This is due to the low probability of two valves failing 
in the open position. By going to a twelve T/C quad 
redundant valve single system, the reliability of the 
system is slightly reduced, The probability of a fail open 
is greater in a quad redundant valve scheme than a dual 
series valve arrangement (twice the number of paths to 
an open failure). Therefore, the increased mass of a quad 
redundant system over a dual series system will not in- 
crease the overall system reliability. Only +he dual series 
valve in the twelve T/C single system scheme has been 
included in this study. Valve-thruster reliabilities are pre- 
sented in Table C-3. Various thrusters along with a water 
electrolysis system (bipropellant) are included in this 
table. 

Auxiliary-propulsion system reliability is summarized in 
Table C-4. From a baseline system standpoint the relia- 

Inert gas: 
Single 
Dual series 
Quad 
12 T/C dual series 

Hydrazine thruster: 
Single 
Dual series 
Quad 
1 2  T/C dual series 

Resistojet-tridyne: 

Single 
Dual series 
Quad 
12 T/C dual series 

Radioisajet: 
Single 
Dual series 
Quad 
1 2  T/C dual series 

Electrolysis: 
Single 
Dual series 
Quad 
12 T/C dual series 

1,000 

Cvcler 

10,000 

0.9622 
0.9802 
0.9991 
0.9997 

0.9479 
0.9656 
0.9842 
0.9996 

0.9576 
0.9755 
0.9943 
0.9997 

0.9609 
0.9789 
0.9978 
0.9997 

0.9297 
0.9523 
0.9762 
0.9994 

0.8973 
0.9455 
0.9964 
0.997 

0.8566 
0.9027 
0.951 3 
0.9958 

0.8941 
0.9422 
0.993 
0.997 

0.8960 
0.9442 
0.995 
0.9976 

0.8272 
0.8869 
0.951 2 
0.9960 

COMPONENT 

PROPELLANT TANK (RpT) 

PROPELLANT HEATER (RLH) 

PRESSURE TRANSDUCER (RpT/D) 

LINE HEATER(RLH) 

RF = R P T R L H ~ R P ~ / D  

R F  = 0.9994 

Fig. C-15.  Subliming solid systems 

bility ranking (high to low) of the feed systems alon 
were considered in this study is as follows: 

(1) Subliming solid 

(2) Hydrazine blowdown 

(3) Inert gas 

(4) Hydrazine pressurized 

( 5 )  Vaporizing liquid 

(6) Electrolysis cell 

that 
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(7) Hydrazine plenum blowdown 

(8) Hydrazine plenum pressurized 

The single valve, six thruster, reliability (1m action 

(2) Radioisojet thruster-valve 

(3) Resistojet thruster-valve 

(4) Hydrazine thruster-valve (direct thermal and cata- 
cycles) ranking is: lyst) 

(1) Inert gas thruster-valve (5) Electrolysis thruster-valve (hot gas bipropellant) 

Table C-4. Auxiliary-propulsion system reliability 

Parameters 

Inert gas 

1 .m 
1 0 , m  

Hydrazine 
ED* 1,O00 
BD 1O,O00 
PRSb 1,OOO 
PRS 10,000 

Hydrazine plenum 
ED 1,OOO 
ED 10,ooO 
PRS 1,O00 
PRS 10,OOO 

Vaporizing, NHr 

1 ,m 
lO,O00 

Resirto jet 
NHa' 1.O00 
NH3 10,OOO 
G N ~ ~  1,000 
GNI l0,OW 

Radioisojet 
NHr 1,OOO 
NH.1 10.O00 

Electrolysis 
CGM' 1.O00 
CGM 10,ooO 

HGM 10,OOO 

Subliming solid 

( Z T )  10,OOO 

HGM' 1.000 

(21)6 1.m 

'Blowdown system. 
bPressure regulated system. 
'Ammonia feed system. 
dGoseous feed system. 

Single 

0.95 1 3 
0.8822 

0.944 
0.853 
0.937 
0.8391 

0.946 
0.8619 
0.939 
0.8473 

0.949 
0.8689 

0.944 
0.866 
0.9468 
0.8793 

0.948 
0.868 

0.948 
0.872 
0.916 
0.804 

0.99 18 
0.9784 

Single 

Dual 
series 

0.9691 
0.9295 

0.961 
0.899 
0.955 
0.884 

0.964 
0.908 
0.956 
0.8928 

0.9668 
0.91 55 

0.962 
0.91 2 
0.964 
0.9266 

0.9656 
0.914 

0.966 
0.919 
0.938 
0.862 

stems 

0.9878 
0.980 

0.980 
0.947 
0.973 
0.932 

0.903 
0.957 
0.9740 
0.9409 

0.985 
0.9648 

0.98 1 
0.962 
0.983 
0.977 

0.984 
0.963 

0.984 
0.969 
0.962 
0.925 

0.9884 
0.980 

0.995 
0.991 
0.988 
0.9755 

0.983 
0.958 
0.9759 
0.9415 

0.986 
0.965 

0.986 
0.965 
0.988 
0.980 

0.986 
0.966 

0.985 
0.969 
0.985 
0.968 

Single 

0.998 
0.986 

0.997 
0.970 
0.996 
0.974 

0.997 
0.981 
0.996 
0.977 

0.997 
0.983 

0.997 
0.902 
0.997 
0.985 

0.997 
0.983 

0.997 
0.984 
0.993 
0.962 

0.9999 
0.9995 

~~~~ 

Double systems 

0.999 
0.995 

0.998 
0.980 
0.998 
0.987 

0.999 
0.992 
0.998 
0.989 

0.999 
0.993 

0.999 
0.992 
0.999 
0.995 

0.999 
0.993 

0.999 
0.993 
0.996 
0.981 

0.9998 
0.9996 

0.9996 
0.997 
0.999 
0.995 

0.9997 
0.998 
0.999 
0.997 

0.9998 
0.999 

0.9996 
0.999 
0.9997 
0.9996 

0.9997 
0.999 

0.9997 
0.999 
0.999 
0.994 

9nert goseous expulsion system. 
'Ignited propellont expulsion system. 
sSystem containing only two thrusters. 
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Appendix D 

System Cost 

As implied by its definition, cost is an integral part of 
cost effectiveness. The impact of an auxiliary-propulsion 
system cost on overall mission cost is diminished as total 
mission cost increases. System costs should be broken 
into recurring and non-recurring cost. The development 
status of an auxiliary-propulsion system is perhaps the 
largest factor associated with non-recurring costs. A large 
portion of development cost is expended for flight quali- 
fication. Most systems studied in this report can be con- 
sidered developed; the low development costs shown 
assume qualification for a new mission, not development 
of an entirely new size or configuration. The electrolysis 
cell, the Tridyne concept, and the thermally decomposed 
hydrazine thruster are not in the developed and flight 
qualified stage, and consequently they are charged with 
high development costs. 

The enclosed system cost figures summarized in 
Table D-1 must be considered only as estimates and 
should not be taken as exact. These figures were derived 
by examining earlier cost estimates, development and 
flight qualification costs, and component costs. One factor 
affecting cost variation is the rate of inflation. At an 
11%/yr inflationary rate, a baseline system of $100,000 will 
grow to nearly $170,000 in 5 yr. The system costs depicted 
in Table D-1 are expressed in 1969 dollars. 

1. Inert Gas Systems 

The inert gas system consists of 6 unheated thrusters 
and 6 valves. The required quantity and species of gas will 

affect system hardware cost. Valve redundancy will also 
affect hardware cost. Development and qualification costs 
would be approximately $300,000 for a typical system in 
the 10- to 500-millipound thrust range with representative 
hardware cost would be $200,000. 

II. Tridyne Systems 

The Tridyne system is similar to the inert gas system. 
The 6 thrusters will be consolidated into 2 modules con- 
taining 3 thrusters each, with a 1.5-W heater for each 
cluster. The feed system would be quite similar to that 
of the gaseous nitrogen system, since the Tridyne gas 
mixture is a gaseous monopropellant. 

Although the Tridyne concept has never been flight 
qualified, the feed system, which is essentially identical to 
that of an inert gas system, will not greatly affect develop- 
ment costs. 

A system development and qualification program 
will cost around $soO,OOO, which includes approximately 
$400,000 hardware acquisition cost. 

111. Unheated Vaporizing liquid Systems 

The vaporizing liquid system again is more complex 
than the inert gas system since the vaporizing liquid feed 
system contains additional components like a plenum, 
vaporizer, and pressure control valve. The thrusters, 

Table D-1. Summary of system costs 

System 

Inert gar 
Tridyne 
Cold ommonio 
Hydrazine catalyst 

Resirtojet 
Plenum 

Resirtojet ommonio 
Inert gor 
Radioirojet 
Electrolysis 
Subliming solid 

System development 
and flight 

qualification, $ 

300 K 
600 K 
500 K 
600 K 
1.4 M 
500 K 
600 K 
500 K 
3.5 M 
2.7 M 
500 K 

Single valve 
system, $ 

200 K 
400 K 
300 K 
400 K 
400 K 
300 K 
400 K 
400 K 
POOK 
700 K 
300 K 

Single system 

Dual-series 
valve system, 

$ 

220 K 
420 K 
320 K 
420 K 
420 K 
320 K 
420 K 
420 K 
920 K 
730 K 
- 

Quad-valve 
system, $ 

260 K 
460 K 
360 K 
460 K 
460 K 
360 K 
460 K 
460 K 
960 K 
780 K 

12 T I C  
dual-series 

valve, $ 

270 K 
550 K 
370 K 
550 K 
550 K 
370 K 
550 K 
550 K 
1.05 M 
980  K 

- I -  

Single 
valve, $ 

400 K 
800 K 
600 K 
800 K 
800 K 
6 0 0 K  
800 K 
800 K 
1.8 M 
1.4 M 
600 K 

Double system 

Dual-series 
valve, $ 

440 K 
840 K 
640 K 
840 K 
840 K 
640 K 
840 K 
840 K 
1.84 M 
1.46 M 
- 

Quad 
valve, $ 

520 K 
920 K 
720 K 
920 K 
920 K 
720 K 
920 K 
920 K 
1.92 M 
1.56 M 
- 
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however, are the same as those used in the inert gas 
system. Since this system has previously been flight quali- 
fied and flown, development costs are lower than undevel- 
oped systems. System development and qualification will 
cost approximately $500,000, which includes $300,000 ex- 
pended on hardware acquisition. 

tion thruster. The resistojet decomposition thruster is pres- 
ently under advanced development; however, a flight 
hardware hydrazine resistojet thruster with a high cyclic 
reliability (heater coil) is not available. A considerable 
amount of effort is necessary to develop this thruster. On 
the other side of the hydrazine system spectrum is the 
catalytic plenum system, which has been flight qualified 
and delivered to a classified project. 

IV. Resistojet 
From present system status, development and qualifica- 

tion costs of the direct catalytic, resistojet, and plenum 
systems are, respectively, $6OO,OOO, $1,400,000, and $500,- 
000. Similarly, the recurring hardware costs are, respec- 
tively, $400,000, $400,000, and $300,000. 

A resistojet is an electrically heated thruster which can 
be implemented to any gas generation source. An inert 
gas feed system concept has been flight qualified and 
flown. Again, as in the Tridyne concept, thrusters may 
be consolidated into clusters thus reducing heater costs. 
Development and flight qualification of an electrically 
heated gas system will cost around $5OO,OOO. Included in 
this are the recurring system hardware costs, which will 
be on the order of $300,000. 

An ammonia resistojet system has been flight qualified 
and flown. Since the baseline system was used only for 
station keeping maneuvers, it consequently had only 
thruster pairs. Clustering thrusters in a module, a 6- 
thruster or 2-thruster system would result in nearly equal 
hardware cost. Development and flight qualification for 
a 6-thruster system would be on the order of $600,000 with 
$400,000 attributed to non-recurring hardware costs. 

V. Radioisojet 

AEC nuclear safety considerations are exacting, al- 
though interpretation of these rules may vary from system 
to system. The incorporation of a re-entry capsule which 
will assure that the radioisotope fuel remains contained 
becomes extremely expensive. The approximate cost of 
development and qualification of a flight system will be 
approximately $3,500,000. About $900,0oO in system hard- 
ware can be expected. 

VI. liquid Hydrazine Systems 

There are three hydrazine systems considered in this 
report. These are resistojet decomposition, direct catalytic 
decomposition, and catalytic plenum. The resistojet and 
catalytic systems are similar except for the thruster itself. 
The direct catalytic thruster employs a bed made of a 
spontaneous type catalyst such as Shell 405, which costs 
over $2,000 a pound. These thrusters have been flight 
qualified and have flown; consequently, their development 
costs are considerably less than the resistojet decomposi- 

VII. Electrolysis 

The electrolysis system in this study utilizes water as the 
stored propellant and consists of 6 bipropellant thrusters 
which may operate in the cold oxygen or hot hydrogen- 
oxygen mode. Implementation of a hydrazine and water 
mixture will result in a negligible cost perturbation. Gas 
generation will occur with an electrolysis cell of the sepa- 
rated gas (life support type) configuration. The electrolysis 
cell has been flight qualified, and a 20-lb thrust bipropel- 
lant catalytic thruster is under development. The develop- 
ment of a dual mode 1 to 5 lbf bipropellant hydrogen 
oxygen thruster is the most expensive element in a flight 
development and qualification program. Implementation 
of the electrolysis cell as a semipassive feed system will 
also require considerable funding. A total system flight 
development and qualification program should cost ap- 
proximately $2,700,000, of which hardware costs will be 
approximately $700,000. 

VIII. Subliming Solid 

The subliming solid configuration consists of a valveless 
feed system and 2 thrusters. The use of this system is 
restricted to station keeping, gravity gradient inversion, 
and spin-up maneuvers which do not require high thrust 
or extremely accurate impulse bits. 

System development and qualification costs are around 
$500,000 of which $300,000 is attributed to hardware. 

IX. Summary 

A summary of system costs is presented as Table D-1. 
The first column is the cost of development and flight 
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qualification of a system. The second column presents the 
hardware cost of the given system. The difference between 
columns one and two is the non-recurring cost associated 
with system development. If more than one flight is con- 
sidered, then this cost may be divided into the total num- 
ber of flights. The single valve system hardware cost is 

modified in the remaining columns to accommodate differ- 
ent redundancy concepts. With the exception of the sub- 
liming solid system (2 thrusters), all the other systems 
presented are in a 6-thruster baseline configuration. Total 
impulse of the systems considered is in the range of 
50-2000 lbf-s. 
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